

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS - *CAMPUS* ARCOS ENGENHARIA MECÂNICA

Biatriz Veloso da Silveira Marcella Moura Vieira e Silva Maria Luiza de Souza Mariana Ribeiro Lopes Victor Augusto Rodrigues Esteves Yan Mileib Novais

# Trabalho Acadêmico Integrador IV Simulação do Lançamento do Foguete Saturno V

Arcos-MG

Dezembro/2018

Biatriz Veloso da Silveira Marcella Moura Vieira e Silva Maria Luiza de Souza Mariana Ribeiro Lopes Victor Augusto Rodrigues Esteves Yan Mileib Novais

### Trabalho Acadêmico Integrador IV Simulação do Lançamento do Foguete Saturno V

Relatório apresentado ao Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais (IFMG), referente ao Trabalho Acadêmico Integrador, como requisito parcial para aprovação em todas as disciplinas ministradas no 4° período do Curso de Engenharia Mecânica.

Instituto Federal de Minas Gerais

Campus Arcos

Engenharia Mecânica

Orientador: Me. Flávio Fernandes Barbosa Silva

Arcos-MG Dezembro/2018

# RESUMO

Foguete, também chamado de míssel, geralmente é criado com um formato cilíndrico e alongado, com a capacidade de lançamento tanto em pontos em movimento ou em pontos estacionários. É um veículo vinculado a um motor que o dispara, eliminando os seus gases de combustão. Este ocorrido pode ser denominado empuxo, ou seja, à medida que os gases são expulsos o foguete perde massa, uma alteração em sua quantidade de movimento. Este trabalho trata-se de uma simulação computacional utilizando técnicas matemáticas, onde é permitido imitar o desempenho, estudar e prever o comportamento de reações de determinados processos do lançamento do foguete Saturno V. Tal foguete conhecido pode ser o mais potente já visto.

Palavras-chave: Foguete, lançamento, simulação.

# ABSTRACT

Rocket, also called missile, is usually created with a cylindrical and elongated shape, with the ability to launch either at moving points or at stationary points. It is a vehicle linked to an engine that shoots it, eliminating its combustion gases. This happened can be called thrust, that is, as the gases are expelled the rocket loses mass, a change in its amount of movement. This work is about a computational simulation using mathematical techniques, where it is possible to imitate the performance, to study and to predict the reaction behavior of certain processes of the Saturn V rocket launch. Such a known rocket may be the most powerful already seen.

Keywords:Rocket, launch, simulation.

# LISTA DE ILUSTRAÇÕES

| Figura 1 –   | Saturno V                   | 8  |
|--------------|-----------------------------|----|
| Figura 2 $-$ | Estrutura do Saturno V      | 10 |
| Figura 3 –   | Esboço do Saturno V         | 11 |
| Figura 4 –   | Velocidade de escape        | 13 |
| Figura 5 –   | Sistema foguete             | 14 |
| Figura 6 –   | Divisão triangular          | 21 |
| Figura 7 $-$ | Câmara de combustão e bocal | 23 |
| Figura 8 –   | Gráfico de Simulação 1      | 24 |
| Figura 9 –   | Gráfico de Simulação 2      | 25 |
| Figura 10 –  | Sitema câmara de combustão  | 30 |
| Figura 11 –  | Diagrama t vs s             | 31 |

# LISTA DE TABELAS

| Tabela 1 $\ -$ | Cronograma            | 12 |
|----------------|-----------------------|----|
| Tabela 2 $\ -$ | Tabela de Simulação 1 | 32 |
| Tabela 3 $$ –  | Tabela de Simulação 2 | 33 |

# SUMÁRIO

| 1     | INTRODUÇÃO                                                                                                                   | 7  |
|-------|------------------------------------------------------------------------------------------------------------------------------|----|
| 1.1   | Objetivos                                                                                                                    | 7  |
| 1.1.1 | Objetivo geral                                                                                                               | 7  |
| 1.1.2 | Objetivos Específicos                                                                                                        | 7  |
| 1.2   | Justificativa                                                                                                                | 7  |
| 2     | REVISÃO BIBLIOGRÁFICA                                                                                                        | 8  |
| 2.1   | Saturno V e estágios                                                                                                         | 8  |
| 2.2   | Propulsão                                                                                                                    | 9  |
| 2.3   | Motor e combustível                                                                                                          | 10 |
| 3     | METODOLOGIA                                                                                                                  | 11 |
| 3.1   | Métodos                                                                                                                      | 11 |
| 3.2   | Materiais e Equipamentos                                                                                                     | 12 |
| 4     | DESENVOLVIMENTO                                                                                                              | 13 |
| 4.1   | Velocidade de escape                                                                                                         | 13 |
| 4.2   | Análise termodinâmica                                                                                                        | 14 |
| 4.2.1 | Equação de Energia em Sistemas Abertos para volumes de controle: operação                                                    |    |
|       | em regime transiente                                                                                                         | 14 |
| 4.3   | Análise dinâmica                                                                                                             | 16 |
| 4.3.1 | Equação da taxa de variação da quantidade de movimento                                                                       | 16 |
| 4.4   | Simulação do lançamento do foguete                                                                                           | 20 |
| 4.5   | Método dos Elementos Finitos                                                                                                 | 20 |
| 4.6   | Câmara de combustão                                                                                                          | 22 |
| 5     | APRESENTAÇÃO DOS RESULTADOS                                                                                                  | 24 |
| 6     | CONCLUSÃO                                                                                                                    | 26 |
|       | REFERÊNCIAS                                                                                                                  | 27 |
|       | APÊNDICES                                                                                                                    | 28 |
|       |                                                                                                                              | 20 |
|       | $AFEINDILE A = \dots $ | 29 |

# 1 INTRODUÇÃO

A história da humanidade é marcada por pessoas que, motivadas por um sonho, pelo conhecimento, criatividade, ou as vezes por pura curiosidade, encontraram soluções que mudaram não apenas as suas vidas, mas o destino de todo o planeta.

Comunicação, sensoriamento remoto, navegação. Essas são algumas das utilidades dos satélites na atualidade voltadas para o cotidiano. Olhando para o futuro, o espaço é, atualmente, o único limitador físico. Seja para manter a rotina ou para avançar na ciência, é indispensável o uso de foguetes para escapar da gravidade do nosso planeta e colocar satélites em órbita ou alcançar outros corpos celestes como a Lua, asteróides, planetas próximos ou outros corpos celestes mais distantes. Desde sua criação, há mais de 1000 anos, os foguetes vêm sendo aprimorados para ir cada vez mais longe e carregar cargas cada vez maiores. Não existe foguete mais potente que o Saturno V, com grande dimensão e capacidade, Saturno V levou os primeiros astronautas que pisaram na Lua. (1)

#### 1.1 OBJETIVOS

#### 1.1.1 OBJETIVO GERAL

Executar a simulação, através de técnicas matemáticas, do lançamento do foguete Saturno V para fora da órbita terrestre.

#### 1.1.2 OBJETIVOS ESPECÍFICOS

- Desenvolvimento de cálculos sobre o lançamento do foguete.
- Elaboração da simulação por meio da modelagem matemática.
- Construção de um prótotipo para visualização de partes do foguete.

#### 1.2 JUSTIFICATIVA

Simulação do lançamento do foguete Saturno V imita aspectos da realidade, mas com variáveis controladas. O próposito do trabalho é a verificação do seu comportamento, que mesmo não sendo idêntico ao real apresenta uma aproximação satisfatória. (2)

# 2 REVISÃO BIBLIOGRÁFICA

Há pouco mais de 2000 anos, Heron de Alexandria criou um mecanismo que chamou de Eolípila (Aeolipile), um dos primeiros mecanismos que se tem conhecimento a utilizar a Terceira Lei de Newton, ação e reação, antes mesmo desta ter sido enunciada. (3)

O dispositivo possui um reservatório de água que é aquecido até evaporar e assim é conduzido aos tubos fixados na esfera fazendo-a girar ao ser expelido. Assim Heron estava inventando o primeiro mecanismo com um dos princípios básicos de um foguete, a conservação do momento. O primeiro combustível sólido para os foguetes foi a pólvora, o registro mais antigo sobre ela veio da China, no final do terceiro século antes de Cristo. (3)

Os foguetes foram importantes instrumentos da guerra, sendo o V-2 um dos primeiros mísseis de longo alcance, representando a sua tecnologia como um grande avanço na construção de foguetes. Desde então, os foguetes vêm sendo aprimorados com a utilização de tecnologia de ponta e altos investimentos em pesquisa e inovação, no intuito de garantir maior segurança a seus tripulantes e sua carga, bem como reduzir o custo para colocá-los em órbita. (4)

### 2.1 SATURNO V E ESTÁGIOS



Figura 1 – Saturno V

Fonte:(1)

O Saturno V (Figura 1) foi desenvolvido pelo grupo de Whernher von Braun, que trabalhava no Marshall Space Flight Center (MSFC), situado no Alabama, e produzido por um consórcio de várias empresas americanas. Projetado para levar três astronautas da

Apollo à Lua e voltar, o Saturno V fez o seu primeiro teste de voo não tripulado em 1967. Um total de 13 foguetes Saturno V foram lançados a partir de 1967 até 1973, realizando as missões Apollo. (1)

Saturno V até hoje é o veículo lançador de maior empuxo que já entrou em produção e é considerado como uma das mais impressionantes máquinas já construídas pelo homem em sua história. Tudo a ele relacionado é grandioso. Em sua configuração de lançamento, sua altura era 110,6 m com um diâmetro 10 m, e sua massa total cerca de 3.000 toneladas, gerando empuxo suficiente para colocar uma carga útil de 118.000 kg numa órbita baixa. Seu primeiro estágio foi o maior cilindro de alumínio já feito. Esse grandioso veículo lançador foi concebido como evolução dos lançadores menores da série Saturno. (3)

O primeiro estágio do foguete Saturno V transporta 740 mil litros de querosene e 1,2 milhão de litros de oxigênio líquido necessário para a combustão. No lançamento, estão os cinco motores F-1 que produzem 7,5 milhões de libra-força de empuxo. A uma altitude de 67 quilômetros, os motores F-1 são desligados. Os parafusos explosivos disparam e o primeiro estágio é separado do foguete, caindo no Oceano Atlântico. (1)

O segundo estágio equipado com 5 motores J2, com empuxo total de 1.125.450 libras-força, transporta 984.000 litros de hidrogênio líquido e 303.000 litros de oxigênio líquido. Alguns segundos após os cinco motores do foguete no segundo estágio serem acesos, uma saia *interstage* na parte inferior é descartada. Logo depois, o foguete de escape de emergência na parte superior do veículo, é disparado e descartado. (1)

Aos 9 minutos e 9 segundos após o lançamento, o segundo estágio é descartado e o motor do foguete do terceiro estágio é disparado. A terceira etapa transporta 252.750 litros de hidrogênio líquido e 73.280 litros de oxigênio líquido. (1)

O motor do terceiro estágio é disparado até 11 minutos e 39 segundos após o lançamento, quando o veículo atingiu velocidade suficiente para alcançar a órbita da Terra. Cerca de duas horas e meia depois, o motor do terceiro estágio é reiniciado para enviar a espaçonave Apollo da órbita da Terra em direção à lua. (1)

Depois que os astronautas em Apollo atracam com o módulo de pouso lunar e se afastam do agora inútil terceiro estágio, esta última parte restante do Saturno V se afasta no espaço profundo ou é comandada a voar para um pouso forçado na lua. (1)

### 2.2 PROPULSÃO

O princípio para a propulsão de foguetes é a Terceira Lei de Newton, para cada ação há uma reação igual e oposta. No foguete, os gases queimados escapam em um jato forte através de um bocal comprimido, o foguete então é impulsionado na direção oposta. (3)

### 2.3 MOTOR E COMBUSTÍVEL

Saturno V possuía cinco motores F1, que consumiam querosene e oxigênio líquido e proporcionavam um empuxo total de 7.503.000 lbf. Sendo classificado como um foguete químico por obter sua energia através da combustão. A câmara de combustão é a responsável por acelerar os gases que serão expelidos, responsáveis pelo empuxo do foguete. (1)

A maior parte da estrutura do foguete é destinada ao transporte de combustível. Boa parte desse propelente é consumido no menor trecho da viagem, dentro dos limites da atmosfera terrestre. É durante esse percurso que é consumida uma considerável quantidade de energia, principalmente para levantar do solo um veículo com o peso de milhares de toneladas. (1)

Vencido esse trecho, o foguete então carrega um peso inútil correspondente à estrutura destinada onde transportava o combustível. Este fato faz logo pensar num sistema que abandona parte dessa estrutura. Recorre-se então ao sistema de vários estágios.(1) A Figura 2 demonstra a estrutura em um todo do foguete.

Figura 2 – Estrutura do Saturno V





# 3 METODOLOGIA

### 3.1 MÉTODOS

Para a criação do esboço do foguete Saturno V foi utilizado o software *Solid Works* e *Ultimaker Cure*, conforme mostra a Figura 3.

Figura 3 – Esboço do Saturno V



Fonte: Próprios autores

Com o desenvovlvimento do projeto foi definido um cronograma de atividades como mostra a Tabela 1.

| ld     | Status             | Nome o | da Tarefa                |                    | Início            | Término      | Tri 3/2018<br>Jul | Ago           | Set   | Tri 4/20<br>Out | 18<br>Nov | Dez | Tri 1/2019<br>Jan |
|--------|--------------------|--------|--------------------------|--------------------|-------------------|--------------|-------------------|---------------|-------|-----------------|-----------|-----|-------------------|
| 1      | Concluída          | Forma  | ação do grupo e escolha  | do projeto         | Qua 08/08/18      | Qua 22/08/18 |                   | -             |       |                 |           |     |                   |
| 2      | Concluída          | Defini | ção e delimitação do eso | copo do projeto    | Qua 22/08/18      | Qua 29/08/18 |                   | •             |       |                 |           |     |                   |
| 3      | Concluída          | Anális | e e cálculos termodinân  | nicos              | Qua 05/09/18      | Qua 19/09/18 |                   |               |       |                 |           |     |                   |
| 4      | Concluída          | Execu  | ção e entrega do relatór | io parcial         | Qua 05/09/18      | Qua 26/09/18 |                   |               |       |                 |           |     |                   |
| 5      | Concluída          | Apres  | entação parcial          |                    | Qua 03/10/18      | Qua 03/10/18 |                   |               |       | \$              |           |     |                   |
| 6      | Concluída          | Comp   | ra do material e execuçã | io do protótipo    | Ter 30/10/18      | Ter 13/11/18 |                   |               |       |                 |           |     |                   |
| 7      | Concluída          | Tabela | a de simulação do fogue  | te                 | Qua 31/10/18      | Seg 12/11/18 |                   |               |       |                 |           |     |                   |
| 8      | Concluída          | Entreg | ga do relatório final    |                    | Qua 05/12/18      | Qua 05/12/18 |                   |               |       |                 |           | ٠   |                   |
| 9      | Concluída          | Prepa  | ração para apresentação  | do TAI             | Qui 06/12/18      | Ter 11/12/18 |                   |               |       |                 |           | н   |                   |
| 10     | Concluída          | Apres  | entação do TAI           |                    | Qua 12/12/18      | Qua 12/12/18 |                   |               |       |                 |           | ٠   |                   |
| 11     | Concluída          | Expos  | ição dos banners         |                    | Qui 13/12/18      | Qui 13/12/18 |                   |               |       |                 |           | *   |                   |
| 12     | Concluída          | Correg | ção e entrega do relatór | io final corrigido | Sex 14/12/18      | Sex 21/12/18 |                   |               |       |                 |           |     |                   |
|        |                    |        |                          |                    |                   |              |                   |               |       |                 |           |     |                   |
|        |                    |        | Tarefa                   |                    | Resumo Inativo    |              | Ta                | refas exter   | has   |                 |           |     |                   |
|        |                    |        | Divisão                  |                    | Tarefa Manual     |              | М                 | Marco externo |       | <               | >         |     |                   |
| Projet | to: ProjetoFoquete |        | Marco                    | •                  | Somente duração   |              | D                 | sta limite    |       |                 | F         |     |                   |
| Data:  | Qui 29/11/18       |        | Resumo                   |                    | Acúmulo de Resumo | Manual       | A                 | ndamento      |       | 1.1             |           |     |                   |
|        |                    |        | Resumo do projeto        |                    | Resumo Manual     |              | Pr                | ogresso ma    | inual | 1.1             |           |     |                   |
|        |                    |        | Tarefa Inativa           |                    | Somente início    | C C          |                   |               |       |                 |           |     |                   |
|        |                    |        | Marco Inativo            | 0                  | Somente término   | 3            |                   |               |       |                 |           |     |                   |

| Tabela   | 1 – | Cronograma      |
|----------|-----|-----------------|
| 10000100 | -   | or on of an and |

Fonte: Próprios autores

### 3.2 MATERIAIS E EQUIPAMENTOS

Para a construção do protótipo utilizou-se uma impressora 3D e material para impressão ABS.

### 4 DESENVOLVIMENTO

#### 4.1 VELOCIDADE DE ESCAPE

A velocidade de escape é uma velocidade mínima necessária para que um objeto, como o foguete, saia da superfície da Terra em direção ao espaço. (5)

Figura 4 – Velocidade de escape



Fonte:(6)

Para calcular a velocidade ideal de escape para o planeta Terra, é considerado que a conservação da quantidade das energias cinética e potencial inicial seja igual à energia final do foguete. Admitindo que a energia final seja zero devido a energia cinética final ser zero pois a velocidade final tende a zero. E a potencial gravitacional final é zero pois a distância tende ao infinito então tem-se uma velocidade de escape aproximadamente 11,2 km/s (A.45). Este resultado descreve a velocidade precisa para que o corpo lançado saia do campo gravitacional.

### 4.2 ANÁLISE TERMODINÂMICA

### 4.2.1 EQUAÇÃO DE ENERGIA EM SISTEMAS ABERTOS PARA VOLUMES DE CONTROLE: OPERAÇÃO EM REGIME TRANSIENTE

O fluxo de massa atravessando a fronteira do sistema faz com que ele seja conhecido como sistema aberto, a Figura 5 apresenta o sistema do foguete. No regime transiente, a taxa de variação da energia total do volume de controle não é zero. (7)



Figura 5 – Sistema foguete

Fonte: Próprios autores

A equação da Primeira Lei da Termodinâmica, conhecida como a Lei da Conservação da Energia, trás o enunciado: "A variação da energia interna U de um sistema representa a diferença entre a quantidade de calor Q trocada com o meio e o trabalho W realizado durante a transformação."(7) A lei é descrita na equação 1.

$$\Delta U = Q - W \tag{1}$$

A Primeira Lei da Termodinâmica também se aplica a situações em que haja fluxo de massa – ou seja, quando houver troca de matéria com a vizinhança do sistema. Nesse caso específico, a Primeira Lei toma uma forma distinta da encontrada anteriormente, devido ser um sistema aberto. A seguir é representada equação da primeira lei para sistemas abertos:

$$\Delta E = Q - W + \dot{m_1}\theta - \dot{m_2}\theta(2)$$

Substituindo cada elemento da equação pelo seus valores, obtem-se:

$$\Delta E = Q - W + \dot{m_1}(h_1 + E_P + E_C) - \dot{m_2}(h_2 + E_P + E_C) \tag{3}$$

Das equações 2 e 3,  $\Delta E$  representa a variação da energia interna por quantidade de matéria; Q a quantidade de calor trocada com o meio;  $\dot{m}$  representa a taxa de variação da massa;  $\dot{m_1} \cdot \theta - \dot{m_2} \cdot \theta$  corresponde respectivamente a variação de matéria e a variação de energia interna; W é o trabalhado realizado durante a transformação; h representa a entalpia;  $E_P$  representa a energia potencial e  $E_C$  representa a energia cinética.

Considerando que a quantidade de calor Q trocada com o meio ambiente é zero então,  $\Delta E = -W + \dot{m_1} \cdot \theta - \dot{m_2} \cdot \theta$ .

Assim, a equação de balanço de energia do foguete é representada pela equação 4 que é a substituição de cada elemento da equação 2 por suas fórmulas, sendo fórmulas as usadas em Termodinâmica.

$$\frac{d}{dt} \left[ (M_o + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \left( \frac{\dot{x}(t)^2}{2} - \frac{GM_{terra}}{R + x(t)} + e_{gas} + e_{pres} \right) \right] = -F_{atri} \cdot \dot{x}(t) - \dot{m}_{comb} \cdot \left( h_{exaus} - \frac{GM_{terra}}{R + x(t)} + \frac{[V_{exaus} - \dot{x}(t)^2]}{2} \right) (4)$$

A equação 4 é composta pelo sistema de massa  $(M_o + M_{comb} - \dot{m}_{comb} \cdot t)$ , onde  $M_o$  é a massa do foguete,  $M_{comb}$  a massa do combustível e  $m_{comb} \cdot t$  a variação da massa do combustível em relação o tempo. A energia total do sistema é dada por  $\frac{d}{dt} \cdot \left[ (M_o + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \left( \frac{\dot{x}(t)^2}{2} - \frac{GM_{terra}}{R + x(t)} + e_{gas} + e_{pres} \right) \right]$ , a taxa temporal é devido a massa do combustivel variar com o tempo. A equação da energia específica por kg do sistema é composta por  $\left( \frac{\dot{x}(t)^2}{2} - \frac{GM_{terra}}{R + x(t)} + e_{gas} + e_{pres} \right)$  e o trabalho das forças externas é indicado pela equação  $-F_{atri} \cdot \dot{x}(t) - \dot{m}_{comb} \cdot \left( h_{exaus} - \frac{GM_{terra}}{R + x(t)} + \frac{[V_{exaus} - \dot{x}(t)^2]}{2} \right)$ .

Analisando as partes específicas dentro da equação, tem-se que  $\frac{\dot{x}(t)^2}{2}$  é a velocidade do centro de massa ou seja, energia cinética;  $-\frac{GM_{terra}}{R+x(t)}$  é o potencial gravitacional que varia

com a localização do foguete;  $\frac{[V_{exaus} - \dot{x}(t)^2]}{2}$  é a velocidade absoluta em relação a câmara de combustão;  $V_{exaus}$  a velocidade de exaustão dos gases;  $e_{gas}$  a energia termodinâmica dos gases e  $e_{pres}$  a energia do sistema de pressurização na câmara.

Derivando a equação 4, e isolando o termo  $\ddot{x}(t)$  que aparecerá na equação derivada, tem-se como resultado a equação:

$$(M_0 + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \ddot{x}(t) = -\rho Ac \cdot \frac{\dot{x}(t)^2}{2} + V_{exaus} \cdot \dot{m}_{comb}$$
$$(M_0 + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \left(\frac{GM_{terra}}{(R+x(t))^2}\right) (5)$$

Sendo  $-\rho Ac \cdot \frac{\dot{x}(t)^2}{2}$  o arraste aerodinâmico;  $V_{exaus} \cdot \dot{m}_{comb}$  a propulsão e  $(M_0 + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \left(\frac{GM_{terra}}{(R+x(t))^2}\right)$  a força gravitacional.

A equação 5 é representada por um somatório de forças,  $\sum F = m \cdot a$ , onde:

$$\sum F = -\rho Ac \cdot \frac{\dot{x}(t)^2}{2} + V_{exaus} \cdot \dot{m}_{comb} - (M_0 + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \left(\frac{GM_{terra}}{(R+x(t))^2}\right)$$
(6)

$$m \cdot a = (M_0 + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \ddot{x}(t) \tag{7}$$

### 4.3 ANÁLISE DINÂMICA

#### 4.3.1 EQUAÇÃO DA TAXA DE VARIAÇÃO DA QUANTIDADE DE MOVI-MENTO

Observando a equação encontrada através da teoria de termodinâmica, é possível analisar que, ela é uma equação de taxa de variação da quantidade de movimento.

O fato de existir uma aceleração no foguete, implica na existência de uma força resultante, que a cada instante no tempo tem a mesma direção e sentido da aceleração. Partindo da ideia onde a força resultante que age no sistema em estudo é igual a variação temporal da quantidade de movimento do sistema. (8)

Embasada nessa teoria então se tem:

Parte da massa do foguete é composta pelo combustível que é expelido através da combustão em forma de gases:

$$\dot{m}_{comb} = \frac{dm}{dt} \tag{8}$$

A velocidade de ejeção do combustível em relação ao foguete é dada por  $V_{exaus}$  (velocidade de exaustão). Então a velocidade do combustível em relação a um observador inercial é:

$$V_{comb} = V_{exaus} + v \tag{9}$$

Utilizando a conservação do movimento para deduzir a equação de movimento para o foguete. De acordo com a Segunda Lei de Newton. (8)

$$\sum \vec{F} = m \cdot \vec{a} \tag{10}$$

$$\sum \vec{F} = m \cdot \frac{d\vec{v}}{dt} \tag{11}$$

Então observa-se que a equação chega em uma derivada temporal da multiplicação da massa pela velocidade:

$$\sum \vec{F} = d \cdot \frac{(m \cdot \vec{v})}{dt} \tag{12}$$

E então resolvendo a derivada do produto, chegou-se a equação de quantidade de movimento para massa constante.

$$\sum \vec{F} = m \cdot \frac{d\vec{v}}{dt} + v \cdot \frac{dm}{dt} \tag{13}$$

Para o foguete, supõe-se que não haja nenhuma força externa agindo sobre o mesmo. Em um determinado instante de tempo t o momento é:

$$\vec{P}_{fog}(t) = m \cdot \vec{v} \tag{14}$$

Depois de um intervalo de tempo dt, o momento do foguete é:

$$\vec{P}_{fog}(t+dt) = (m-|dm|) \cdot (\vec{v}+d\vec{v})$$
(15)

Já que uma quantidade de massa de combustível dm é lançada para fora do foguete, o momento total no instante (t + dt) não é apenas o momento do foguete, mas há também o momento de massa dm de combustível que adquire a velocidade  $V_{comb}$  ao ser expelida. Então o momento no instante (t + dt) é dado por:

$$\vec{P}_{total}(t+dt) = \vec{P}_{fog} \cdot (t+dt) + |dm| \cdot \vec{V}_{comb}$$
(16)

Na ausência de forças externas, o momento total deve ser conservado durante o intervalo de tempo dt. Igualando as equações 14 e 16 resulta-se em:

$$m \cdot \vec{v} = \vec{P}_{fog} \cdot (t + dt) + |dm| \cdot \vec{V}_{comb}$$
(17)

Igualando a equação 17 à equação 15:

$$m \cdot \vec{v} = (m - |dm|) \cdot (\vec{v} + d\vec{v}) + |dm| \cdot \vec{V}_{comb}$$

$$\tag{18}$$

$$m \cdot \vec{v} = m \cdot \vec{v} - \vec{v} \cdot |dm| + m \cdot d\vec{v} + |dm| \cdot \vec{V}_{comb}$$
(19)

Desprezando termos infinitesimais de segunda ordem e simplificando a equação $\ 19$ obtém-se:

$$0 = 0 - \vec{v} \cdot |dm| + m \cdot d\vec{v} + |dm| \cdot \vec{V}_{comb}$$

$$\tag{20}$$

$$(\vec{V}_{comb} - \vec{v}) \cdot \mid dm \mid +m \cdot d\vec{v} = 0$$
<sup>(21)</sup>

Substituindo a equação 21 na equação 9:

$$(\vec{V}_{exaus} + \vec{v} - \vec{v}) \cdot \mid dm \mid +m \cdot d\vec{v} = 0$$
(22)

Substituindo a equação 22 na equação 9 :

$$\vec{V}_{exaus} - \mid dm \mid +m \cdot d\vec{v} = 0 \tag{23}$$

Dividindo a equação 23 por dt:

$$\vec{V}_{exaus} - \frac{\mid dm \mid}{dt} + m \cdot \frac{d\vec{v}}{dt} = 0$$
(24)

Como a massa do foguete decresce com o tempo:

$$\frac{\mid dm \mid}{dt} = -\frac{dm}{dt} \tag{25}$$

Então:

$$\vec{V}_{exaus} \cdot -\frac{dm}{dt} + m \cdot \frac{d\vec{v}}{dt} = 0$$
<sup>(26)</sup>

$$\vec{V}_{exaus} \cdot -\frac{dm}{dt} = -m \cdot \frac{d\vec{v}}{dt} \tag{27}$$

Usando a equação 8, pode-se escrever:

$$\sum \vec{F} = m \cdot \frac{d\vec{v}}{dt} + \vec{v} \cdot \frac{dm}{dt}$$
(28)

Sendo, a taxa de variação da equação do foguete:

$$\frac{d\vec{P}_{fog}}{dt} = \frac{d\cdot(m\cdot\vec{v})}{dt} = \frac{m\cdot d\vec{v}}{dt} = -\dot{m}_{comb}\cdot(\vec{V}_{exaus} + \vec{v})$$
(29)

Assim, a força total resultante sobre o foguete, de acordo com a Segunda Lei de Newton, é dada por  $-\dot{m}_{comb} \cdot (\vec{V}_{exaus} + \vec{v})$ . Essa é a força obtida pela expulsão do foguete. Se além dessa força houver outra força externa resultante  $\vec{F}$  sobre o foguete, como a força peso, então a Segunda Lei de Newton fornece:

$$\frac{d\vec{P}_{fog}}{dt} = -\dot{m}_{comb} \cdot (\vec{V}_{exaus} + \vec{v}) + \vec{F}$$
(30)

$$\frac{d\vec{P}_{fog}}{dt} = \frac{m \cdot d\vec{v}}{dt} + \vec{v} \cdot \frac{dm}{dt}$$
(31)

$$\frac{m \cdot d\vec{v}}{dt} + \vec{v} \cdot \frac{dm}{dt} = -\dot{m}_{comb} \cdot (\vec{V}_{exaus} + \vec{v}) + \vec{F}$$
(32)

$$\frac{m \cdot d\vec{v}}{dt} = -\dot{m}_{comb} \cdot \vec{V}_{exaus} + \vec{F}$$
(33)

Comparando com a equação encontrada através da Primeira Lei da Termodinâmica:

$$-\dot{m}_{comb} \cdot \vec{V}_{exaus} = \dot{m}_{comb} \cdot \vec{V}_{exaus} \tag{34}$$

Força de exaustão = Força de empuxo

$$\vec{F} = -\rho AC \cdot \frac{\dot{x}(t)^2}{2} - (M_0 + M_{comb} - \dot{m}_{comb} \cdot t) - \frac{GM_{terra}}{(R + x(t))^2}$$
(35)

$$m \cdot \frac{dv}{dt} = \dot{m}_{comb} \cdot \vec{V}_{exaus} + \vec{F} \tag{36}$$

$$(M_0 + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \ddot{x}(t) = -\rho Ac \cdot \frac{\dot{x}(t)^2}{2} + V_{exaus} \cdot \dot{m}_{comb}$$

$$-(\mathbf{M}_0 + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \left(\frac{GM_{terra}}{(R+x(t))^2}\right) (37)$$

Neste ponto observa-se que foi encontrada uma equação que envolve as derivadas de uma função desconhecida de uma variável, conhecida também como E.D.O (Equação Diferencial Ordinária). (9)

### 4.4 SIMULAÇÃO DO LANÇAMENTO DO FOGUETE

Através da Equação Diferencial Ordinária (E.D.O) deu-se início à resolução do problema envolvendo o método da modelagem matemática para a simulação do lançamento do foguete.

$$(M_0 + M_{comb} - \dot{m}_{comb} \cdot t) \cdot \ddot{x}(t) = -\rho AC \cdot \frac{\dot{x}(t)^2}{2} - (M_0 + M_{comb} - \dot{m}_{comb} \cdot t) - \frac{GM_{terra}}{(R + x(t))^2}$$
(38)

Classificando a E.D.O obtemos:

- Equação não linear de 2ª ordem
- Não homogênea
- Não constante

Depois de pesquisas de resolução da E.D.O foi descoberto que não existe um método analítico de resolução. Então chegou-se a conclusão que a resolução da E.D.O seria por elementos finitos, pois esse método resolve equações de análise térmica, acústica, dinâmica, eletromagnética e de fluídos para casos mais simples de comportamento linear, o que atende as necessidades do projeto proposto. (10)

### 4.5 MÉTODO DOS ELEMENTOS FINITOS

Simulação computacional são técnicas matemáticas, usadas em computadores onde é permitido imitar o desempenho, construir teorias, além de, estudar e prever o comportamento de reações de determinados processos do mundo real através de modelos. Na grande maioria dessas análises são utilizados softwares computacionais que utilizam o Método dos Elementos, que possibilita a obtenção de respostas para inúmeros problemas de engenharia. (11)

Esse método objetiva que um número infinito de variáveis desconhecidas seja substituídas por um número limitado de elementos de comportamento preciso, que são obtidos através da divisão da geometrica. (11) Essas divisões podem ser de diversos modelos, tais como quadrilateral, triangular, entre outras, em função das características do problema que se tem. Os elementos resultantes dessa divisão são conectados entre si. Deve se destacar que os comportamentos físicos descritos através desse método não serão resolvidos de maneira exata mas sim de uma forma aproximada. (12)

A exatidão do Método dos Elementos Finitos resulta da quantidade de elementos. Ou seja, quanto menor for o tamanho e maior for o número deles, maior a precisão nos resultados de análise. (12)



Figura 6 – Divisão triangular

Fonte: Próprios autores

$$\dot{x} = \frac{dx}{dt} \tag{39}$$

$$\frac{dx}{dt} = \frac{x_{k+1} - x_k}{\Delta T} \tag{40}$$

$$\dot{x} = \frac{x_{k+1} - x_k}{\Delta T} = \frac{x_k - x_{k-1}}{\Delta T}$$
(41)

$$\ddot{x}(t) = \left(\frac{x_{k+1} - 2x_k + x_{k-1}}{\Delta T^2}\right)$$
(42)

Assim, substitui-se a parcela  $\frac{\dot{x}(t)^2}{2}$  da equação 38 por:

$$\dot{x} = \frac{1}{2} \cdot \frac{x_k - x_{k-1}}{\Delta T}^2$$
(43)

Substituindo os termos 43 e 42 na equação 38 conclui-se com a equação:

$$\left(M_0 + M_{comb} - \dot{m}_{comb} \cdot t\right) \cdot \left(\frac{x_{k+1} - 2x_k + x_{k-1}}{\Delta T^2}\right) = -\rho AC \cdot \frac{1}{2} \cdot \left(\frac{x_k - x_{k-1}}{\Delta T}\right)^2 - \left(M_0 + M_{comb} - \dot{m}_{comb} \cdot t\right) - \frac{GM_{terra}}{(R+x_k)^2} (44)$$

No Apêndice 7 encontra-se a forma com que a 44 é utilizada para fins da simulação.

### 4.6 CÂMARA DE COMBUSTÃO

Quanto maior a pressão na câmara de combustão maior a temperatura e consequentemente, maior a  $V_{exaus}$ . De interesse do projeto, seria melhor uma maior pressão e uma maior temperatura, porém, se houver muita pressão será preciso paredes muito grossas e como resultado uma câmara muito pesada, o que acaba penalizando no aumento do peso do foguete.

A câmara é a responsável por acelerar, inicialmente, os gases que serão expelidos, responsáveis pelo empuxo do foguete. É onde se injeta combustível e oxidante para que possa ocorrer a reação de combustão de forma a converter a energia contida em suas ligações químicas em energia térmica e cinética. Apesar da câmara de combustão acelerar os gases que nela entram através da reação entre combustível e oxidante, a velocidade que os produtos de combustão adquirem ainda é relativamente pequena comparada com a velocidade necessária para gerar o empuxo que o foguete necessita. Desta forma, o bocal de escoamento acelera estes gases.

A queima do gás produz pressão em todas as direções. A câmara de combustão não se move em nenhuma direção devido as forças nas paredes opostas que se anularem. Quando é colocado o bocal na câmara onde os gases escapam, ocorre um desequilíbrio. A pressão exercida nas paredes laterais opostas continuará não produzindo força, pois a pressão exercida de um lado anula a do outro. Já a pressão exercida na parte superior da câmara produz empuxo, pois não tem pressão onde está o bocal.

Figura 7 – Câmara de combustão e bocal



Fonte: Próprios autores

# 5 APRESENTAÇÃO DOS RESULTADOS

Com os pârametros das Tabelas 2 e 3 que podem ser encontradas no apêndices, foram desenvolvidas simulações da velocidade e posição do lançamento do foguete mostradas através dos gráficos das Figuras 8 e 9, onde foram apresentados e discutidos a seguir.

O gráfico da Figura 8 valida os resultados da Tabela 2, e apresenta a simulação do lançamento do foguete Saturno V quando o mesmo consegue superar a velocidade de escape de 11,2 km/s e sai da órbita terrestre.

O gráfico foi dividido em duas curvas, e em três eixos sendo eles a altitude (km), tempo (s) e velocidade (km/s). A curva vermelha, representa na tabela a velocidade (km/s) em um tempo (t), e a curva amarela a altitude (km) em um tempo (t).

Durante um certo tempo o foguete acelera alcançando uma velocidade máxima de aproximadamente 13 km/s, superando a velocidade de escape orbital. Assim, quando a queima do seu combustível chega ao fim a sua velocidade decresce moderadamente, mas tende assintoticamente a um valor e consequentemente se afasta da Terra.



Figura 8 – Gráfico de Simulação 1

Fonte: Próprios autores

O gráfico da Figura 9 apresenta a simulação do lançamento do foguete Saturno V quando o mesmo não consegue superar a velocidade de escape de 11,2 km/s, como pode ser analisado na curva vermelha, não conseguindo sair da órbita terrestre.

Foi modificado o peso  $(M_0)$  do foguete na Tabela 3 que podem ser encontradas no apêndices, para mostrar no gráfico da simulação que um peso maior faz com que sua velocidade diminua e o foguete caia até o solo, como mostrado na curva amarela. Para obter alta velocidade o foguete deve ser leve.

Figura 9 – Gráfico de Simulação 2



Fonte: Próprios autores

# 6 CONCLUSÃO

O projeto teve como objetivo principal, a simulação do lançamento do foguete Saturno V, considerado até hoje o maior e mais potente foguete já lançado para fora da órbita terrestre. O tema proposto pode ser considerado um assunto de pouco conhecimento, porém de grande curiosidade.

Foram encontrados desafios como, a ausência de dados reais disponibilizados pela agência NASA (National Aeronautics and Space Administration), a qual é responsável pelo lançamento desse foguete. E na elaboração da tabela de simulação, para selecionar os dados relevantes para a conclusão da mesma.

Como uma simulação imita aspectos da realidade, os valores utilizados para tal foram fictícios porém mantendo coerência em relação aos dados reais.

Da modelagem matemática surgiu a Equação Diferencial Ordinária que teve considerável importância para a simulação. Por fim, pode-se observar nos gráficos das Figuras 8 e 9 que o projeto atendeu ao objetivo proposto, concluindo que o peso e a velocidade do foguete são inversamente proporcionais, ou seja, quanto maior o peso menor a velocidade.

# REFERÊNCIAS

1 TATE, K. NASA's Mighty Saturn V Moon Rocket Explained (Infographic). Disponível em: <a href="https://www.space.com/18422-apollo-saturn-v-moon-rocket-nasa-infographic">https://www.space.com/18422-apollo-saturn-v-moon-rocket-nasa-infographic</a>. html>. Citado 4 vezes nas páginas 7, 8, 9 e 10.

2 CHWIF, L.; MEDINA, A. C. *Modelagem e simulação de eventos discretos*. [S.l.]: Afonso C. Medina, 2006. Citado na página 7.

3 TAYLOR, S. T. Introducion to Rocket Science and Engineering. [S.l.: s.n.], 2009. Citado 2 vezes nas páginas 8 e 9.

4 NASA testa nave de escape de astrounautas, 08 setembro 2009. Disponível em: <a href="http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=nasa-testanave-escape-astronautas&id=010130090708>">http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=nasa-testanave-escape-astronautas&id=010130090708></a>. Citado na página 8.

5 ZANETIC, J. Física e arte: uma ponte entre duas culturas. *Pro-posições*, v. 17, n. 1, p. 39–57, 2006. Citado na página 13.

6 SELEGHIM, P. Termodinâmica: T5bis Rocket Simulation/ Equaçõe de balanço para volumes de controle 2/2. Disponível em: <https://www.youtube.com/watch?v= 1jll0UbZ4D4&list=PLmho8Rcnd60fFdZ10ItM7\_lt43L4Po8Fi&index=8>. Citado na página 13.

7 CENGEL Y.A; BOLES, M. *Termodinâmica*. 7. ed. [S.l.]: Bookman, 2013. Citado na página 14.

8 HIBBELER, R. C. *Dinâmica*: Mecânica par engenharia. 12. ed. [S.l.]: Pearson Education, 2010. Citado 2 vezes nas páginas 16 e 17.

9 ZILL, D. G. *Equações Diferenciais*: com aplicações em modelagem. 10. ed. [S.l.]: CENAGE Learning, 2016. Citado na página 20.

10 SILVA, J. B. C. Simulação Numerica de Escoamento de Fluidos pelo Metodo dos Elementos Finitos Baseado em Volume de Controle. Tese (Doutorado) — Universidade Estadual de Campinas, 1998. Disponível em: <file:///C:/Users/Talita/Downloads/Silva\_JoaoBatistaCampos\_D.pdf>. Citado na página 20.

11 GAVIRA, M. de O. Simulação Computacional como uma Ferramenta de Aquisição de Conhecimento. Dissertação (Mestrado), 2003. Disponível em: <https://s3.amazonaws.com/academia.edu.documents/40681123/Gavira1.pdf? AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1543957539&Signature= hEb55%2BnkJA7XnOpXp8QuFOVSocU%3D&response-content-disposition=inline% 3B%20filename%3DIdeias.pdf>. Citado na página 20.

12 GUILHERME, J. *Elementos Finitos*: O que e? quando utilizar? quais são os beneficios? Disponível em: <htp://ensus.com.br/elementos-finitos-quais-os-beneficios/>. Citado na página 21.

# Apêndices

# APÊNDICE A -

Apêndice 1= Cálculo da velocidade orbital

$$E_{i} = E_{f}$$

$$K_{i} + U_{gi} = K_{f} + U_{gf}$$

$$\frac{1}{2} \cdot (m) \cdot (v^{2}) - \frac{GMm}{R} = 0 - 0$$

$$\frac{1}{2} \cdot (m) \cdot (v^{2}) = \frac{GMm}{R}$$

$$(v^{2}) = \frac{GMm}{R} \cdot \frac{2}{m}$$

$$(v^{2}) = \frac{2GM}{R}$$

$$v = \sqrt{\frac{2GM}{R}}$$

$$v = \sqrt{\frac{2(66,73 \cdot 10^{-12}) \cdot (5,972 \cdot 10^{24})}{(6,371 \cdot 10^{6})}}$$

$$v \approx 11, 2km/s \text{ (A.45)}$$

Apêndice 2= Densidade do ar seco

A densidade do ar seco pode ser calculada usando a Lei dos Gases Ideais e a constante dos gases ideais, expressa como função da temperatura e da pressão:

$$\rho = \frac{P_{bar} \cdot 100000}{\frac{R_{gas}}{T^{\circ} + 273}} \tag{A.46}$$

Apêndice 3= Função modelada:  $V_{exaus}$ 

Para efeitos da simulação considere que o combustível  $C_2H_5OH$  (etanol) e o comburente  $O_2$  (oxigênio) já estejam reagidos a priori e os gases estejam armazenados a um tanque de gases a pressão e temperatura constantes no foguete, onde existe um sistema de pressurização que faz com que isso aconteça.

Reação química dos gases de combustão:

- 1-  $C_2H_5OH + O_2 \rightarrow CO_2 + H_2O$
- 2-  $C_2H_5OH + 3 \cdot O_2 \rightarrow 2 \cdot CO_2 + 3 \cdot H_2O$

 $2 \cdot CO_2 + 3 \cdot H_2O$  mistura de gases mantidos a pressão e temperatura constantes na câmera de combustão.

De acordo com a Primeira Lei da Termodinâmica  $\Delta U = Q - W$ :

Figura 10 – Sitema câmara de combustão



Fonte: Próprios autores

$$h(P_{cc}, T_{cc}) - h(P_{amb}, T_{exaus}) - \frac{(V_{exaus})^2}{2} = 0 - 0$$
 (A.47)

$$h(P_{cc}, T_{cc}) = h(P_{amb}, T_{exaus}) + \frac{(V_{exaus})^2}{2}$$
 (A.48)

$$V_{exaus} = \sqrt{2[h(P_{cc}, T_{cc} - h(P_{amb}, T_{exaus})]}$$
(A.49)

$$T_{exaus} = temperatura(P_{amb}, S_{cc}) \tag{A.50}$$

Quando os gases vão passar pelo bocal para aumentar a velocidade, é considerado que não haverá atrito nas paredes, nem entre as lâminas de fluidos e também que não haverá nem perda nem ganho de calor. Assim, a expansão será isentrópica até a pressão ambiente que no lançamento do foguete tem grande variação. A expansão isentrópica é uma transformação termodinâmica onde a entropia do sistema se mantém constante.



Figura 11 – Diagrama t vs s

Fonte: Próprios autores

Apêndice 4= Pressão atmosférica

A pressão atmosférica é o peso que o ar exerce sobre a superfície terrestre. Sua manifestação está diretamente relacionada à força da gravidade e à influência que essa realiza sobre as moléculas gasosas que compõem a atmosfera. Assim, a pressão atmosférica sofre variações conforme as altitudes (d) e as condições de temperatura do ar.

$$1 \cdot e^{\frac{-9.8 \cdot x_k}{R_{gas}}}_{T_0+273} \tag{A.51}$$

Apêndice 5= Velocidade média do foguete

Velocidade é uma medida que descreve a movimentação de um corpo em um determinado espaço ( $\Delta s$ ) e tempo ( $\Delta t$ ).

$$V_{med} = \frac{\Delta s}{\Delta t} \tag{A.52}$$

A velocidade média do foguete então é calculada por:

$$V_k = \frac{x_{k+1} - x_{k-1}}{\frac{2}{dt}}$$
(A.53)

Apêndice 7= Função posição

Explicitando o próximo valor de x em função dos anteriores, então isola-se  $x_{k+1}$ na função:

$$x_{k+1} = 2 \cdot x_k - x_{k-1} - \frac{\Delta t^2}{[M_0 + M_{comb} - \dot{m}_{comb} \cdot t]} \cdot \left(\rho AC \cdot \frac{1}{2} \cdot \left(\frac{x_k - x_{k-1}}{\Delta t}\right)^2 - V_{exaus} \cdot \dot{m}_{comb}\right)$$
(A.54)

Para fim dos cálculos demonstrados nas Tabelas 2 e 3, os valores anteriores  $x_k$  e  $x_{k-1}$  são inicialmente as condições originárias do início do movimento do foguete, onde, ele está parado em uma posição inicial.

Tabelas:

Tabela 2 – Tabela de Simulação 1

| Mzero        | 1000        | kg      |    | k    | - t - 1 | ncomt  | M(t)    | T ('C)  | P (bar) | (kg/m3 | Vexaus  | 8k-1    | sk      | 8k+1    | vk      | km      | km/h    | Fgrav   | Fprop   | Fatri   |
|--------------|-------------|---------|----|------|---------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Mcomb        | 250000      | kg      |    | 0    | 0       | 2500   | 251000  | 25      | 1       | 1,1692 | 1403    | 6,63574 | 0       | 6,63574 | 0       | 0       | 0       | 251000  | 293489  | 0       |
| mcomb        | 2500        | kg/s    |    | 1    | 2       | 2500   | 246000  | 24,94   | 0,9992  | 1,1686 | 1403,1  | 0       | 6,63574 | 31,1081 | 7,77702 | 0,00664 | 0,00778 | 246000  | 293489  | 35,266  |
| Tqueima      | 100         | s       |    | 2    | 4       | 2500   | 241000  | 24,72   | 0,9964  | 1,1662 | 1403,3  | 6,63574 | 31,1081 | 74,6083 | 16,9931 | 0,03111 | 0,01699 | 240998  | 293489  | 167,756 |
|              |             |         |    | 3    | 6       | 2500   | 236000  | 24,329  | 0,9915  | 1,1619 | 1403,7  | 31,1081 | 74,6083 | 138,383 | 26,8188 | 0,07461 | 0,02682 | 235995  | 293489  | 415,58  |
| omb. gases   | carbon diox | ide     |    | - 4  | 8       | 2500   | 231000  | 23,755  | 0,9842  | 1,1556 | 1404,2  | 74,6083 | 138,383 | 223,739 | 37,2828 | 0,13838 | 0,03728 | 230990  | 293489  | 797,303 |
| P cte        | 100         | bar     |    | 5    | 10      | 2500   | 226000  | 22,986  | 0,9745  | 1,1472 | 1404,9  | 138,383 | 223,739 | 332,046 | 48,4158 | 0,22374 | 0,04842 | 225984  | 293489  | 1332,08 |
| Tee          | 800         | °C      |    | 6    | 12      | 2500   | 221000  | 22,012  | 0,9623  | 1,1365 | 1405,7  | 223,739 | 332,046 | 464,742 | 60,2506 | 0,33205 | 0,06025 | 220977  | 293489  | 2039,28 |
|              |             |         |    | - 7  | 14      | 2500   | 216000  | 20,817  | 0,9474  | 1,1235 | 1406,8  | 332,046 | 464,742 | 623,336 | 72,8224 | 0,46474 | 0,07282 | 215969  | 293489  | 2937,92 |
|              |             |         |    | 8    | 16      | 2500   | 211000  | 19,39   | 0,9298  | 1,108  | 1408,1  | 464,742 | 623,336 | 809,417 | 86,1688 | 0,62334 | 0,08617 | 210959  | 293489  | 4046,06 |
|              |             |         |    | 9    | 18      | 2500   | 206000  | 17,715  | 0,9093  | 1,0898 | 1409,6  | 623,336 | 809,417 | 1024,66 | 100,331 | 0,80942 | 0,10033 | 205948  | 293489  | 5379,86 |
|              |             |         |    | 10   | 20      | 2500   | 201000  | 15,778  | 0,8859  | 1,0689 | 1411,4  | 809,417 | 1024,66 | 1270,82 | 115,351 | 1,02466 | 0,11535 | 200935  | 293489  | 6952,6  |
|              |             |         |    | 11   | 22      | 2500   | 196000  | 13,563  | 0,8595  | 1,045  | 1413,4  | 1024,66 | 1270,82 | 1549,77 | 131,278 | 1,27082 | 0,13128 | 195922  | 293489  | 8773,32 |
|              |             |         |    | 12   | 24      | 2500   | 191000  | 11,052  | 0,83    | 1,0181 | 1415,6  | 1270,82 | 1549,77 | 1863,47 | 148,162 | 1,54977 | 0,14816 | 190907  | 293489  | 10845,2 |
|              |             |         |    | 13   | 26      | 2500   | 186000  | 8,2288  | 0,7975  | 0,9881 | 1418,1  | 1549,77 | 1863,47 | 2214    | 166,058 | 1,86347 | 0,16606 | 185891  | 293489  | 13163,6 |
| /r_exaustão  | 1150,4776   | mis     |    | 14   | 28      | 2500   | 181000  | 5,074   | 0,762   | 0,9547 | 1421    | 1863,47 | 2214    | 2603,58 | 185,027 | 2,214   | 0,18503 | 180874  | 293489  | 15714,1 |
| p_exaustão   | 1,2700212   | kJ/kg/K |    | 15   | 30      | 2500   | 176000  | 1,5678  | 0,7234  | 0,918  | 1424,1  | 2214    | 2603,58 | 3034,54 | 205,135 | 2,60358 | 0,20514 | 175856  | 293489  | 18469,3 |
| Aerodinâmica |             |         | 16 | 32   | 2500    | 171000 | -2,3109 | 0,682   | 0,8778  | 1427,6 | 2603,58 | 3034,54 | 3509,39 | 226,454 | 3,03454 | 0,22645 | 170837  | 293489  | 21386,8 |         |
| p ACs        | 1           | kg/m    |    | 17   | 34      | 2500   | 166000  | -6,5845 | 0,6378  | 0,8341 | 1431,3  | 3034,54 | 3509,39 | 4030,8  | 249,065 | 3,50939 | 0,24906 | 165817  | 293489  | 24405,  |
| Lapse Rate   | 9           | 'Cłkm   |    | 18   | 36      | 2500   | 161000  | -11,277 | 0,591   | 0,7868 | 1435,5  | 3509,39 | 4030,8  | 4601,61 | 273,054 | 4,0308  | 0,27305 | 160797  | 293489  | 2744    |
|              | simulação   |         |    | 19   | 38      | 2500   | 156000  | -16,415 | 0,5421  | 0,7361 | 1440    | 4030,8  | 4601,61 | 5224,89 | 298,522 | 4,60161 | 0,29852 | 155775  | 293489  | 30386,6 |
| Ttotal       | 2000        | s       |    | 20   | 40      | 2500   | 151000  | -22,024 | 0,4912  | 0,682  | 1445    | 4601,61 | 5224,89 | 5903,92 | 325,576 | 5,22489 | 0,32558 | 150753  | 293489  | 33106,4 |
| N#           | 1000        |         |    | 21   | 42      | 2500   | 146000  | -28,135 | 0,439   | 0,6247 | 1450,3  | 5224,89 | 5903,92 | 6642,25 | 354,34  | 5,90392 | 0,35434 | 145730  | 293489  | 35437,3 |
| dt           | 2           | s       |    | 22   | 44      | 2500   | 141000  | -34,78  | 0,3859  | 0,5645 | 1456,2  | 5903,92 | 6642,25 | 7443,73 | 384,954 | 6,64225 | 0,38495 | 140707  | 293489  | 37190,1 |
| eps          | 1,00E-08    | m       |    | 23   | 46      | 2500   | 136000  | -41,994 | 0,3328  | 0,5019 | 1462,4  | 6642,25 | 7443,73 | 8312,54 | 417,573 | 7,44373 | 0,41757 | 135683  | 293489  | 38155,9 |
| relax        | 0,1         |         |    | 24   | 48      | 2500   | 131000  | -49,813 | 0,2803  | 0,4376 | 1469,2  | 7443,73 | 8312,54 | 9253,24 | 452,378 | 8,31254 | 0,45238 | 130659  | 293489  | 38119,5 |
|              |             |         |    | 25   | 50      | 2500   | 126000  | -58,279 | 0,2296  | 0,3725 | 1476,5  | 8312,54 | 9253,24 | 10270,8 | 489,572 | 9,25324 | 0,48957 | 125635  | 293489  | 37186,8 |
|              |             |         |    | 26   | 52      | 2500   | 121000  | -65     | 0,1852  | 0,3103 | 1482,3  | 9253,24 | 10270,8 | 11370,6 | 529,343 | 10,2708 | 0,52934 | 120611  | 293489  | 36292,8 |
| G            | 6,67E-11    | Nm2łkg  | 1  | 27   | 54      | 2500   | 116000  | -65     | 0,1546  | 0,259  | 1482,3  | 10270,8 | 11370,6 | 12557,9 | 571,761 | 11,3706 | 0,57176 | 115587  | 293489  | 34843,9 |
| MT           | 5,96E+24    | kg      |    | 28   | 56      | 2500   | 111000  | -65     | 0,1273  | 0,2132 | 1482,3  | 11370,6 | 12557,9 | 13838,4 | 616,937 | 12,5579 | 0,61694 | 110564  | 293489  | 32876,6 |
| B            | 6,37E+06    | m       |    | 29   | 58      | 2500   | 106000  | -65     | 0,1031  | 0,1728 | 1482,3  | 12557,9 | 13838,4 | 15218,4 | 665,138 | 13,8384 | 0,66514 | 105541  | 293489  | 30467,4 |
|              |             |         |    | - 30 | 60      | 2500   | 101000  | -65     | 0,0822  | 0,1377 | 1482,3  | 13838,4 | 15218,4 | 16705   | 716,665 | 15,2184 | 0,71666 | 100519  | 293489  | 27711,2 |
| Hmax         | 182,60627   | km      |    | - 31 | 62      | 2500   | 96000   | -65     | 0,0644  | 0,1079 | 1482,3  | 15218,4 | 16705   | 18305,9 | 771,863 | 16,705  | 0,77186 | 95498,6 | 293489  | 24715,5 |
|              |             |         |    | 32   | 64      | 2500   | 91000   | -65     | 0,0495  | 0,083  | 1482,3  | 16705   | 18305,9 | 20029,6 | 831,133 | 18,3059 | 0,83113 | 90479,3 | 293489  | 21594,3 |
| Tzero        | 25          | °C      |    | - 33 | 66      | 2500   | 86000   | -65     | 0,0373  | 0,0625 | 1482,3  | 18305,9 | 20029,6 | 21885,6 | 894,939 | 20,0296 | 0,89494 | 85461,8 | 293489  | 18460,9 |
| Pzero        | 1           | bar     |    | - 34 | 68      | 2500   | 81000   | -65     | 0,0275  | 0,0461 | 1482,3  | 20029,6 | 21885,6 | 23884,9 | 963,827 | 21,8856 | 0,96383 | 80446,4 | 293489  | 15421,5 |
| Rgas         | 287         | J/kg/K  |    | 35   | 70      | 2500   | 76000   | -65     | 0,0198  | 0,0332 | 1482,3  | 21885,6 | 23884,9 | 26039,4 | 1038,44 | 23,8849 | 1,03844 | 75433,4 | 293489  | 12568,6 |
|              |             | _       |    | 36   | 72      | 2500   | 71000   | -65     | 0,0139  | 0,0233 | 1482,3  | 23884,9 | 26039,4 | 28363,1 | 1119,57 | 26,0394 | 1,11957 | 70423,2 | 293489  | 9975,8  |
|              |             |         |    | 37   | 74      | 2500   | 66000   | -65     | 0,0095  | 0,0159 | 1482,3  | 26039,4 | 28363,1 | 30872   | 1208,15 | 28,3631 | 1,20815 | 65416,3 | 293489  | 7695,   |
|              |             |         |    |      |         |        |         |         |         |        |         |         |         |         |         |         |         |         |         |         |

Fonte: Próprios autores

Tabela 3 – Tabela de Simulação 2

| Mzero        | 50000       | kg      |    | k   | t i  | ncomt  | M(t)   | T ('C) | P (bar) : | » (kg/m3 | Vexaus  | 8k-1    | 8k      | 8k+1     | vk      | km      | km/h    | Fgrav  | Fprop  | Fatri   |
|--------------|-------------|---------|----|-----|------|--------|--------|--------|-----------|----------|---------|---------|---------|----------|---------|---------|---------|--------|--------|---------|
| Moomb        | 250000      | kg      | _  | 0   | 0    | 2500   | 300000 | 25     | 1         | 1,1692   | 1403    | -0,0048 | 0       | -0,00479 | 0       | 0       | 0       | 300000 | 293489 | 0       |
| mcomb        | 2500        | kgłs    |    | 1   | 0,15 | 2500   | 299625 | 25     | 1         | 1,1692   | 1403    | 0       | -0,0048 | 0,03333  | 0,1111  | -5E-06  | 0,00011 | 299625 | 293489 | 0,00722 |
| Tqueima      | 100         | s       |    | 2   | 0,3  | 2500   | 299250 | 25     | 1         | 1,1692   | 1403    | -0,0048 | 0,03333 | 0,11467  | 0,3982  | 3,3E-05 | 0,0004  | 299250 | 293489 | 0,0927  |
|              |             |         |    | 3   | 0,45 | 2500   | 298875 | 24,999 | 1         | 1,1692   | 1403    | 0,03333 | 0,11467 | 0,23958  | 0,6875  | 0,00011 | 0,00069 | 298875 | 293489 | 0,27632 |
| omb. gases   | carbon diox | ide     |    | 4   | 0,6  | 2500   | 298500 | 24,998 | 1         | 1,1692   | 1403    | 0,11467 | 0,23958 | 0,40838  | 0,97901 | 0,00024 | 0,00098 | 298500 | 293489 | 0,56032 |
| Picte        | 100         | bar     |    | 5   | 0,75 | 2500   | 298125 | 24,996 | 1         | 1,1692   | 1403    | 0,23958 | 0,40838 | 0,6214   | 1,27274 | 0,00041 | 0,00127 | 298125 | 293489 | 0,94696 |
| Tee          | 800         | °C      |    | 6   | 0,9  | 2500   | 297750 | 24,994 | 0,9999    | 1,1692   | 1403    | 0,40838 | 0,6214  | 0,87899  | 1,56869 | 0,00062 | 0,00157 | 297750 | 293489 | 1,43852 |
|              |             |         |    | - 7 | 1,05 | 2500   | 297375 | 24,992 | 0,9999    | 1,1691   | 1403,1  | 0,6214  | 0,87899 | 1,18146  | 1,86687 | 0,00088 | 0,00187 | 297375 | 293489 | 2,03731 |
|              |             |         |    | 8   | 1,2  | 2500   | 297000 | 24,989 | 0,9999    | 1,1691   | 1403,1  | 0,87899 | 1,18146 | 1,52917  | 2,16729 | 0,00118 | 0,00217 | 297000 | 293489 | 2,74567 |
|              |             |         |    | 9   | 1,35 | 2500   | 296625 | 24,986 | 0,9998    | 1,1691   | 1403,1  | 1,18146 | 1,52917 | 1,92244  | 2,46994 | 0,00153 | 0,00247 | 296625 | 293489 | 3,56594 |
|              |             |         |    | 10  | 1,5  | 2500   | 296250 | 24,983 | 0,9998    | 1,169    | 1403,1  | 1,52917 | 1,92244 | 2,36162  | 2,77484 | 0,00192 | 0,00277 | 296250 | 293489 | 4,5005  |
|              |             |         |    | 11  | 1,65 | 2500   | 295875 | 24,979 | 0,9997    | 1,169    | 1403,1  | 1,92244 | 2,36162 | 2,84704  | 3,08199 | 0,00236 | 0,00308 | 295875 | 293489 | 5,55174 |
|              |             |         | 1  | 12  | 1,8  | 2500   | 295500 | 24,974 | 0,9997    | 1,169    | 1403,1  | 2,36162 | 2,84704 | 3,37904  | 3,3914  | 0,00285 | 0,00339 | 295500 | 293489 | 6,72211 |
|              |             |         |    | 13  | 1,95 | 2500   | 295125 | 24,97  | 0,9996    | 1,1689   | 1403,1  | 2,84704 | 3,37904 | 3,95796  | 3,70307 | 0,00338 | 0,0037  | 295125 | 293489 | 8,01403 |
| /r_exaustão  | 1150,4776   | mis     | 1  | 14  | 2,1  | 2500   | 294750 | 24,964 | 0,9995    | 1,1688   | 1403,1  | 3,37904 | 3,95796 | 4,58415  | 4,01702 | 0,00396 | 0,00402 | 294750 | 293489 | 9,42998 |
| p_exaustão   | 1,2700212   | kJ/kg/K |    | 15  | 2,25 | 2500   | 294375 | 24,959 | 0,9995    | 1,1688   | 1403,1  | 3,95796 | 4,58415 | 5,25793  | 4,33324 | 0,00458 | 0,00433 | 294375 | 293489 | 10,9725 |
| Aerodinâmica |             |         | 16 | 2,4 | 2500 | 294000 | 24,953 | 0,9994 | 1,1687    | 1403,1   | 4,58415 | 5,25793 | 5,97967 | 4,65174  | 0,00526 | 0,00465 | 294000  | 293489 | 12,644 |         |
| p ACx        | 1           | kg/m    |    | 17  | 2,55 | 2500   | 293625 | 24,946 | 0,9993    | 1,1686   | 1403,1  | 5,25793 | 5,97967 | 6,7497   | 4,97254 | 0,00598 | 0,00497 | 293625 | 293489 | 14,4471 |
| Lapse Rate   | 9           | 'C/km   |    | 18  | 2,7  | 2500   | 293250 | 24,939 | 0,9992    | 1,1686   | 1403,1  | 5,97967 | 6,7497  | 7,56836  | 5,29563 | 0,00675 | 0,0053  | 293250 | 293489 | 16,3843 |
|              | simulação   |         |    | 19  | 2,85 | 2500   | 292875 | 24,932 | 0,9991    | 1,1685   | 1403,1  | 6,7497  | 7,56836 | 8,436    | 5,62102 | 0,00757 | 0,00562 | 292874 | 293489 | 18,4583 |
| Ttotal       | 150         | s       |    | 20  | 3    | 2500   | 292500 | 24,924 | 0,999     | 1,1684   | 1403,1  | 7,56836 | 8,436   | 9,35297  | 5,94872 | 0,00844 | 0,00595 | 292499 | 293489 | 20,6717 |
| N#           | 1000        |         |    | 21  | 3,15 | 2500   | 292125 | 24,916 | 0,9989    | 1,1683   | 1403,1  | 8,436   | 9,35297 | 10,3196  | 6,27873 | 0,00935 | 0,00628 | 292124 | 293489 | 23,027  |
| dt           | 0,15        | s       |    | 22  | 3,3  | 2500   | 291750 | 24,907 | 0,9988    | 1,1682   | 1403,1  | 9,35297 | 10,3196 | 11,3363  | 6,61107 | 0,01032 | 0,00661 | 291749 | 293489 | 25,527  |
| eps          | 1,00E-08    | m       |    | 23  | 3,45 | 2500   | 291375 | 24,898 | 0,9987    | 1,1681   | 1403,1  | 10,3196 | 11,3363 | 12,4033  | 6,94574 | 0,01134 | 0,00695 | 291374 | 293489 | 28,1743 |
| relax        | 0,1         |         |    | 24  | 3,6  | 2500   | 291000 | 24,888 | 0,9986    | 1,168    | 1403,1  | 11,3363 | 12,4033 | 13,5211  | 7,28273 | 0,0124  | 0,00728 | 290999 | 293489 | 30,9717 |
|              |             |         |    | 25  | 3,75 | 2500   | 290625 | 24,878 | 0,9985    | 1,1679   | 1403,2  | 12,4033 | 13,5211 | 14,69    | 7,62207 | 0,01352 | 0,00762 | 290624 | 293489 | 33,9218 |
|              |             |         |    | 26  | 3,9  | 2500   | 290250 | 24,868 | 0,9983    | 1,1678   | 1403,2  | 13,5211 | 14,69   | 15,9102  | 7,96376 | 0,01469 | 0,00796 | 290249 | 293489 | 37,0275 |
| G            | 6,67E-11    | Nm2/kg  |    | 27  | 4,05 | 2500   | 289875 | 24,857 | 0,9982    | 1,1677   | 1403,2  | 14,69   | 15,9102 | 17,1823  | 8,3078  | 0,01591 | 0,00831 | 289874 | 293489 | 40,2915 |
| MT           | 5,96E+24    | kg      |    | 28  | 4,2  | 2500   | 289500 | 24,845 | 0,998     | 1,1675   | 1403,2  | 15,9102 | 17,1823 | 18,5065  | 8,6542  | 0,01718 | 0,00865 | 289499 | 293489 | 43,7167 |
| B            | 6,37E+06    | m       |    | 29  | 4,35 | 2500   | 289125 | 24,833 | 0,9979    | 1,1674   | 1403,2  | 17,1823 | 18,5065 | 19,8832  | 9,00297 | 0,01851 | 0,009   | 289123 | 293489 | 47,3058 |
|              |             |         |    | 30  | 4,5  | 2500   | 288750 | 24,821 | 0,9977    | 1,1673   | 1403,2  | 18,5065 | 19,8832 | 21,3127  | 9,35411 | 0,01988 | 0,00935 | 288748 | 293489 | 51,0617 |
| Hmax         | 182,60627   | km      |    | 31  | 4,65 | 2500   | 288375 | 24,808 | 0,9976    | 1,1671   | 1403,2  | 19,8832 | 21,3127 | 22,7955  | 9,70763 | 0,02131 | 0,00971 | 288373 | 293489 | 54,9873 |
|              |             |         |    | 32  | 4,8  | 2500   | 288000 | 24,795 | 0,9974    | 1,167    | 1403,2  | 21,3127 | 22,7955 | 24,3318  | 10,0635 | 0,0228  | 0,01006 | 287998 | 293489 | 59,0855 |
| Tzero        | 25          | °C      |    | 33  | 4,95 | 2500   | 287625 | 24,781 | 0,9972    | 1,1668   | 1403,2  | 22,7955 | 24,3318 | 25,922   | 10,4218 | 0,02433 | 0,01042 | 287623 | 293489 | 63,3592 |
| Pzero        | 1           | bar     |    | 34  | 5,1  | 2500   | 287250 | 24,767 | 0,997     | 1,1667   | 1403,3  | 24,3318 | 25,922  | 27,5666  | 10,7825 | 0,02592 | 0,01078 | 287248 | 293489 | 67,8114 |
| Rgas         | 287         | J/kg/K  |    | 35  | 5,25 | 2500   | 286875 | 24,752 | 0,9968    | 1,1665   | 1403,3  | 25,922  | 27,5666 | 29,2657  | 11,1457 | 0,02757 | 0,01115 | 286873 | 293489 | 72,4451 |
| _            |             |         |    | 36  | 5,4  | 2500   | 286500 | 24,737 | 0,9966    | 1,1663   | 1403,3  | 27,5666 | 29,2657 | 31,0199  | 11,5112 | 0,02927 | 0,01151 | 286498 | 293489 | 77,2633 |
|              |             |         |    | 37  | 5,55 | 2500   | 286125 | 24,721 | 0,9964    | 1,1662   | 1403,3  | 29,2657 | 31,0199 | 32,8295  | 11,8791 | 0,03102 | 0,01188 | 286122 | 293489 | 82,2689 |

Fonte: Próprios autores