

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS - CAMPUS ARCOS ENGENHARIA MECÂNICA

Guilherme Henrique de Castro

Lara Ellen de Sousa

Moisés Junior Lemos Alves

Paulo Henrique Chaves

Riuler Eduardo José de Oliveira

Trabalho Acadêmico Integrador III Bomba de água manual por pulso

Arcos-MG

Junho/2019

Guilherme Henrique de Castro

Lara Ellen de Sousa

Moisés Junior Lemos Alves

Paulo Henrique Chaves

Riuler Eduardo José de Oliveira

Trabalho Acadêmico Integrador III Bomba de água manual por pulso

Relatório apresentado ao Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais (IFMG), referente ao Trabalho Acadêmico Integrador III, como requisito parcial para aprovação em todas as disciplinas ministradas no 3° período do Curso de Engenharia Mecânica.

Instituto Federal de Minas Gerais $Campus\ Arcos$ Engenharia Mecânica

Orientador: José Luis Gonçalves

Arcos-MG Junho/2019

RESUMO

Este trabalho tem como principal finalidade, construir e detalhar um mecanismo de bombeamento por pulso, que é um equipamento que pode transportar ou transferir um denominado volume de água com maior alcance e velocidade por meio de uma câmara de vácuo movida por um pistão e com ele, solucionar problemas de abastecimento de água em áreas com grandes altitudes. Para o desenvolvimento do protótipo, foram utilizados um pistão, duas valvulas de retenção, anéis de vedação, um cilindro e uma alavanca que quando unidos, formam um sistema de bombeamento eficaz e de baixo custo.

Palavras-chave: Mecanismo de bombeamento, água, pistão, protótipo, impulso.

SUMÁRIO

1	INTRODUÇÃO	5
2	OBJETIVOS	6
2.1	Objetivo geral	6
2.2	Objetivo específico	6
3	JUSTIFICATIVA	7
4	REFERENCIAL TEÓRICO	8
4.1	Principais componentes do mecanismo	8
5	METODOLOGIA	g
5.1	Propriedade dos materiais	g
5.2	Vazão, pressão e força	10
5.2.1	Pressões sobre as faces do êmbolo	11
5.2.2	Forças sobre as faces do êmbolo para provocar seu deslocamento	11
5.2.3	Vazão	12
5.2.4	Perdas	13
5.3	Visualização do gráfico de recalque	15
5.4	Diagrama de corpo livre	15
5.5	Flambagem da haste	16
6	CONCLUSÃO	19
	REFERÊNCIAS	20
	APÊNDICE A – TABELA DE CUSTOS	21
	APÊNDICE B – CRONOGRAMA	22
	ANEXO A – IMAGEM DA BOMBA	23

LISTA DE ILUSTRAÇÕES

Figura 1 –	Simulação do protótipo em 3D
Figura 2 -	Tabela Excel de peças e materiais
Figura 3 –	Gráfico de recalque
Figura 4 -	Diagrama de corpo livre da alavanca
Figura 5 -	Flambagem da haste
Figura 6 –	Tabela de materiais
Figura 7 –	Cronograma finalizado
Figura 8 -	Bomba em funcionamento

1 INTRODUÇÃO

O mecanismo de bombeamento por pulso é um equipamento que pode transportar um denominado volume de água com maior alcance e velocidade por meio de uma câmara de vácuo movida por um pistão, pode ser utilizado em muitos sistemas dentro da engenharia, pois o mesmo se baseia nos princípios de impulsão, conceito aqui entendido como força resultante exercida por um fluido em condições hidrostáticas sobre um corpo que nele esteja imerso, o que ilustra diversos mecanismos que estão presentes no cotidiano.

A impulsão é movida pelo pistão, que é acionado manualmente por meio de uma alavanca e quando movimentado, impele a água com pressão suficiente por uma saída completando assim o objetivo deste trabalho, que pretende aumentar a pressão de vazão da água e conduzi-la para altitudes maiores com força o suficiente para esse processo.

Este relatório irá se estruturar em três etapas, sendo a primeira contando com o desenvolvimento da montagem do mecanismo de bombeamento por pulso e da sua animação em 3D, seguido pela escolha dos materiais selecionados de acordo com seus princípios de resistência a estímulos e por fim os cálculos referentes à montagem e ao dimensionamento do protótipo, constituindo um estudo interdisciplinar que visa a articulação do conteúdo presentado pelas disciplinas do terceiro período do curso de engenharia mecânica junto a técnica de montagem aqui proposta.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Aumentar a pressão de vazão da água e conduzi-la para altitudes maiores.

2.2 OBJETIVO ESPECÍFICO

- Estudo do bombeamento de água através de um pistão manual
- Estudo de materiais que melhor se adequem ao projeto, visando melhor desempenho, vida útil e baixo custo
- Calcular a montagem e o dimensionamento do protótipo.

3 JUSTIFICATIVA

A escolha do tema ocorreu após o grupo se deparar com um problema de transferência de água de um ponto mais baixo de um terreno para o ponto mais alto, como o abastecimento de água em bairros mais elevados por exemplo. Ao deparar com a problematica, pensou-se a respeito de uma possível solução, chegando na conclusão de construir um mecanismo que fosse capaz de conduzir a água, visando um baixo custo e grande eficiência. Analisando as possibilidades, a escolha viável foi à produção de um equipamento de bombeamento de água por pulso.

4 REFERENCIAL TEÓRICO

Para solucionar o problema de abastecimento de água em lugares elevados foi projetado um sistema de bombeamento por pulso. Para a sua construção, inicialmente foi necessário compreender algumas considerações úteis para o estudo da bomba e suas instalações.

Será considerado o "liquido perfeito", isto é, um fluido ideal perfeitamente móvel, cujas moléculas não fazem esforços resistentes e as forças exteriores em que o liquido é submetido são equilibradas somente pela força de inércia.

Fisicamente falando, o mecanismo é definido como "bomba alternativa", também chamada de bomba de êmbolo ou bomba recíproca, porque nela o líquido enche espaços existentes no corpo da bomba através do movimento do pistão.

Este processo é realizado primeiramente pela aspiração. O pistão recua e produz vácuo dentro do cilindro provocando o escoamento de água (que será fornecida por uma mangueira lateral) graças a pressão superior que estará dentro da câmara. Essa diferença de pressão aciona uma válvula de aspiração e trava a válvula de recalque. Quando o pistão avança, a válvula de aspiração trava, acionando a válvula de recalque e o liquido é escoado, dando inicio posteriormente a um novo ciclo.

4.1 PRINCIPAIS COMPONENTES DO MECANISMO

- 1. Anéis de borracha: Também chamados de "o'rings", são responsáveis por vedar o espaço entre a camisa e o pistão, evitando a perda de liquido por vazamento.
- 2. Êmbolo: Tarugo de polipropileno, parte responsável por exercer pressão no liquido dentro da câmara.
- 3. Câmara: Sua função é reservar e escoar a água.
- 4. Haste: Peça que faz a transferencia da força aplicada na alavanca para o êmbolo.
- 5. Válvulas de retenção: acionadas pelo movimento do pistão, são responsáveis por travar e escoar o líquido que entrará dentro da câmara, como um diafragma.

5 METODOLOGIA

A seguir tem-se uma imagem da projeção do protótipo em 3D, para a melhor compreensão da metodologia é interessante ter uma visualização de como ele é montado e onde ficam suas peças, assim, facilitando o entendimento.

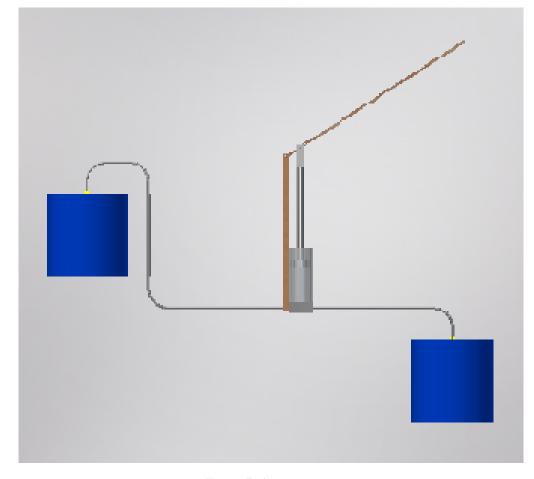


Figura 1 – Simulação do protótipo em 3D

Fonte: Próprios autores

5.1 PROPRIEDADE DOS MATERIAIS

O material ideal para a fabricação de uma bomba como essa é o aço inoxidável 304 já que é resistente a corrosão atmosférica, característica existente devido a sua ligação com cromo e níquel fazendo com que ele fique menos reativo. A escolha de um material resistente a corrosão é fundamental, já que será exposto a água e a umidade em toda a parte do tempo. Também será utilizado para fabricar o cilindro. No desenvolvimento do protótipo foram utilizados tubos de PVC, por questões de viabilidade e de custo.

Para o processo de vedação e liberamento do escoamento foram utilizadas válvulas de retenção de bronze, que são mais resistentes à pressão e com isso amplificam a vida útil do equipamento.

Para auxiliar no processo de vedação e impedir que a agua evacue no espaço entre o êmbolo e a parede do tubo do pistão, foi utilizado 2 anéis de borracha (anéis o'ring) que são ideais pois sofrem esforços e retornam para sua forma original facilmente, preenchendo todos os espaços vazios.

A alavanca para bombeamento deverá ser feita de aço carbono, pois é encontrado com facilidade no mercado e por fim o êmbolo de polipropileno, que é resistente e responde muito bem à pressão exercida pelo equipamento.

O estimulo aplicado em cada material gera uma resposta, que deve ser prevista e estudada para não gerar prejuizo no desempenho do mesmo.

Tabela de Materiais e peças					
Peça	Material	Função			
Cilindro	Aço inox 304	Resistente a corrosão			
Êmbolo	Polipropileno	Exercer pressão			
Reservatório	Aço inox 304	Resistente a corrosão			
Alavanca	Aço carbono	Acionamento			
Anéis de vedação	Borracha	Vedação			
Válvulas de retenção	Bronze	Suportar alta pressão			

Figura 2 – Tabela Excel de peças e materiais

Fonte: Próprios autores

5.2 VAZÃO, PRESSÃO E FORÇA

Para auxiliar na resolução de algumas questões pendentes, o estudo foi baseado em conceitos de mecânica dos fluidos. A partir daí, concluiu-se que quando um fluido ideal escoa através de uma tubulação, suas condições podem variar da seguinte forma:

- A área da seção transversal do tubo pode variar;
- A entrada e a saída do tubo pode estar em diferentes níveis;
- As pressões de entrada e saída podem ser diferentes;

É com base nessas variações que, aplicando a Equação de Bernoulli chegou-se no resultado de vazão, pressão e força do sistema hidráulico a seguir:

5.2.1 PRESSÕES SOBRE AS FACES DO ÊMBOLO

Constantes que foram consideradas para o cálculo do protótipo:

Curso do êmbolo (l): 115.00 mm

Diâmetro do êmbolo (D): 52.40 mm

Diâmetro da haste (d): 20.00 mm

Número de RPM (n): 10.67 RPM

Altura total de aspiração (Ha): 1.00 m

Altura total de recalque (Hr): 3.00 m

• Área nítida do êmbolo

$$\Omega = \frac{\pi \cdot D^2}{4} = 2,16 \cdot 10^{-3}$$

• Área da haste

$$\Omega' = \frac{\pi \cdot d^2}{4} = \frac{3,14 \cdot 0,020^2}{4} = 3,14 \cdot 10^{-4} \quad m^2$$

Pressão na entrada da bomba (aspiração)

$$Pa=1,0 \quad mca=0,1 \quad Kgf \cdot cm^2=1000 \quad kgf \cdot m^{-2}$$

• Pressão na boca de recalque da bomba

$$Pr = 3 \quad mca = 0, 3 \quad Kgf \cdot cm^2 = 3000 \quad kgf \cdot m^{-2}$$

5.2.2 FORÇAS SOBRE AS FACES DO ÊMBOLO PARA PROVOCAR SEU DESLOCAMENTO

- No deslocamento de baixo para cima do êmbolo:
- Para vencer a pressão do lado que era de aspiração

$$Fa = Pa \cdot \Omega = 1000 \cdot (2,29 \cdot 10^{-3}) = 2,29 \quad kgf$$

• Para vencer a pressão do recalque, por ter-se aberto a válvula de recalque

$$Fr = pr(\Omega - \Omega') = 3000 \cdot (2, 29 \cdot 10^{-3} - 3, 14 \cdot 10^{-4}) = 5,928 \text{ kgf}$$

• Força resultante de baixo para cima

$$f = \sum F = Fa + Fr = 2,29 + 5,928 = 8,218 \quad kgf$$

- No deslocamento de cima para baixo:

• Para vencer a pressão da aspiração

$$F'a = Pa \cdot (\Omega - \Omega') = 1000 \cdot (2,29 \cdot 10^{-3} - 3,14 \cdot 10^{-4}) = 1,976$$
 kgf

• Para vencer a pressão do recalque

$$F'r = Pr \cdot \Omega = 3000 \cdot (2.29 \cdot 10^{-3}) = 6.87$$
 kgf

• Força resultante de cima para baixo

$$F' = \sum F' = Fa' + F'r = 1,976 + 6,870 = 8,846$$
 kgf

Estas forças se transmitem à biela e daí ao eixo de manivela e vão interessar ao projeto de regularização do movimento do eixo motor e a equilibragem dinâmica do mesmo.

- Descargas fornecidas pela bomba

$$\frac{\pi n}{60}(D^2 - d^2)R' \cdot \Lambda$$

$$R' = \frac{R}{2} = \frac{0{,}115}{2} = 0{,}0575 \quad mm$$

Adotando 0,94 para o rendimento volumétrico

$$Q = \frac{3,14 \cdot 10,67}{60} \cdot (0,0524^2 - 0,020^2) \cdot 0,0575 \cdot 0,96 = 7,2304 \cdot 10^{-5}$$
$$Q = 0.0723 \quad m^3$$

5.2.3 VAZÃO

Para a determinação da vazão de água do sistema, foi realizado um teste onde foi bombeado 10l de água de um recipiente posicionado à 1m abaixo do nível da bomba para outro recipiente a 3 metros acima dela. A partir dos resultados obtidos tem-se:

- Qv-vazão volumétrica;
- V-volume;
- t- tempo;

$$Qv = \frac{V}{t}$$

$$Qv = \frac{10}{90}$$

$$Qv = 0{,}111 \quad m^3/s$$

Tendo em vista que 11 de água é aproximadamente 1kg, pode-se considerar que a vazão volumetrica (Qv) será igual a vazão de massa (QM)

- Qm- vazão em massa;
- rho densidade da água;
- A- Área da seção transversal;

$$Qm = \frac{\rho \cdot V}{t} = \rho \cdot Qv = \rho \cdot V \cdot A$$

Portanto, pode-se determinar a velocidade de escoamento

$$Qm = \rho \cdot V \cdot A$$

$$0,111 = 1 \cdot V \cdot 0,217$$

$$0,217V = 0,111$$

$$V = \frac{0,111}{0,217}$$

$$V = 0,511 \quad m^3/s$$

Para determinar A foi utilizado:

$$\frac{\pi \cdot d^2}{4}$$

$$\frac{\pi \cdot 0,526^2}{4}$$

$$4 = 0,217 \quad m$$

Como se trata de uma tubulação com volume constante a vazão e a aspiração de recalque serão iguais.

5.2.4 PERDAS

- Perda hidraulica de aspiração, considerando (y) o peso específico do líquido e (P) a pressão atmosférica
 - Ja- perda de carga;
 - Hb- pressão atmosférica;
 - ha- altura de aspiração;
 - P0- pressão na entrada de aspiração;
 - y- densidade do liquido;

$$Ja = \sqrt{\left[(0 + Hb + 0)0(ha + \frac{P}{y} + \frac{V_0^2}{2g})\right]}$$
$$Ja = \sqrt{\left[1 - \left(\frac{1}{9810} + \frac{0,965^2}{2 \cdot 9,81}\right)\right]^2}$$

$$Ja = 0,047 \quad kgf$$

Para achar o V:

$$V = d \cdot a$$

$$4,45 \cdot 0,217$$

$$0,965 \quad m^3$$

- Perda hidraulica de recalque, considerando (i) a seção de entrada e (e) saída de recalque
 - Jr- perda de carga no recalque
 - hb- altura de recalque;
 - Pr- pressão na saída de recalque;
 - i- distância vertical entre a entrada e saída da bomba;

$$Jr = \sqrt{\left[\left(\frac{P}{y} + 1 + \frac{v^2}{2g}\right) - \left(hr + hb + \frac{v^2}{2g}\right)\right]^2}$$

$$Jr = \sqrt{\left[\left(\frac{460, 83}{9810} + 0 + \frac{0,965^2}{2 \cdot 9,81}\right) - \left(3 + 1 + \frac{0,965^2}{2 \cdot 9,81}\right)\right]^2}$$

$$Jr = 3,96$$

Para determinar o P:

$$P = \frac{F}{A}$$

$$P = \frac{100}{0,217}$$

$$P = 460,83 \quad Pa$$

• Perda total no sistema Jr= Perda total Ja= Perda de aspiração Jr=

$$Jt = Ja + Jr$$

$$Jt = 0,047 + (-3,95)$$

$$Jt = -3,90 \quad kgf$$

5.3 VISUALIZAÇÃO DO GRÁFICO DE RECALQUE

Esse gráfico descreve a vazão em função da posição do êmbolo, demonstrando a vazão máxima e a vazão minima em cada ciclo percorrido pelo mesmo.

 Q_{max} $Q_{1}+Q_{2}$ Q_{min} Q_{min}

Figura 3 – Gráfico de recalque

Fonte: Bombas e instalações de bombeamento

Este gráfico pode ser construído com a utilização da função horária do movimento harmônico simples(MHS), pois pode ser descrito por funções horárias harmônicas de seno e coseno.

$$Q - vazão$$

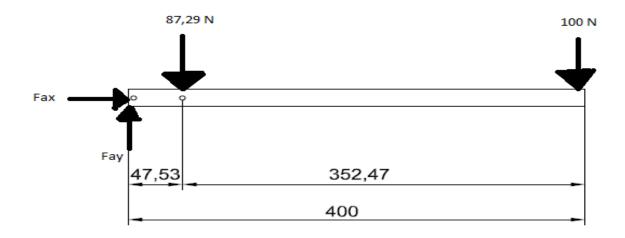
$$\alpha - período do pistão$$

$$X = A \cdot \sqrt{cos \cdot (wt + \phi)^2}$$

5.4 DIAGRAMA DE CORPO LIVRE

Alavanca

Encontrando as forças atuantes na alavanca de acionamento, fazendo o diagrama de corpo livre da alavanca (unidade de medida mm):


$$\sum F = 0$$

$$\sum F_x = 0$$

$$\sum F_y = 0$$

$$\sum F_z = 0$$

Figura 4 – Diagrama de corpo livre da alavanca

Fonte: Próprios autores

$$F_{ax} = 0$$

$$+ \sum F_y = 0$$

$$-100 - 87, 29 + F_{ay} = 0$$

$$F_{ay} = 187.29 \quad N$$

5.5 FLAMBAGEM DA HASTE

Para descobrir o peso exercido na haste foi calculado a massa, onde o volume do pistão multiplica a densidade da água, seus valores são

$$V_{pistao} = 8,925$$
 cm^3

e

$$D_{H_20} = 0,997$$
 g/cm

ao calcular tem-se:

$$m = v \cdot q = 8,125 \cdot 8,89 \cdot 0,997 = 8,89 \quad kq$$

Logo após encontrar a massa, pode-se calcular o peso exercido na haste:

$$P = m \cdot q = 8,89 \cdot 9,81 = 87.3$$
 N

Para cacular a flambagem que a haste irá sofrer, é utilizado a equação

$$Pcr = \frac{\pi \cdot E \cdot I}{(K \cdot L)^2}$$

para encontrar a carga crítica (Pcr), como a haste está presa por pinos e sua extremidades engatadas, o valor do fator de comprimento efetivo(K) é K=0.7 Lembrando que a haste é

Figura 5 – Flambagem da haste

Fonte: Próprios autores

um cilindro e sua base é um círculo, a formula para calcular momento de inercia de um círculo é $\,$

$$I = \frac{1}{4} \cdot \pi \cdot (R)^4$$

no desenho a cima mostra a medida do diâmetro e na formula é necessário do raio (valores em mm), o valor do raio é a metade do valor do diâmetro, sendo assim o raio vai ter valor 10. Através de pesquisas encontrou-se o momento de elasticidade (E) do cano pvc que é o material utilizado para a construção da haste, então

$$E_{pvc} = 2,2921MPa$$

Calculando:

$$Pcr = \frac{\pi^2 (2921 \cdot 10^6) \cdot (\frac{1}{4} \cdot \pi \cdot (20)^4)}{(0, 7 \cdot 290)^2}$$
$$Pcr = 8, 79 \cdot 10^{10} \quad N$$

Para calcular a tensão crítica, foi dividido o ponto crítico pela área da peça, como a área da peça é circular, o calculo foi feito através da formula

$$A = \pi \cdot r^2$$

$$\sigma_{cr} = \frac{Pcr}{A} = \frac{8,79 \cdot 10^{10}}{314,15} = 279,80 \cdot 10^6 \quad N/mm^2$$

Para saber se a peça é estável o (P) é menor que (Pcr), como sabemos que P=87,29N, e

$$Pcr = 8,79 \cdot 10^{10}$$
 N

entao, tem-se uma peça estavel.

6 CONCLUSÃO

O estudo aprofundado do tema proposto pelo grupo resultou na aprovação da ideia do projeto. Sua construção se mostrou viável, tendo em vista o baixo custo e a eficiência considerável em situações que o projeto visou resolver. A bomba de água manual por pulso foi capaz de transferir dez litros em um minuto e meio para no mínimo quatro metros acima do seu nível, confirmando o resultado esperado.

REFERÊNCIAS

HIBBELER, R.C. Estática: Mecânica para engenharia. Tradução de Daniel Vieira; Revisão de José Maria Campos dos Santos. São Paulo: Pearson Prentice Hall, 2011. Nenhuma citação no texto.

MACINTYRE J. A. Bombas e instalações de bombeamento. Rio de Janeiro: LTC, 1997. Nenhuma citação no texto.

STEWART J. Calculo Volume 2. São Paulo: Cengage Learning, 2016. Nenhuma citação no texto.

RESNICK R.; HALLIDAY D.; KRANE S.K. Fisica 2 Rio de Janeiro: LTC, 2014. Nenhuma citação no texto.

POLIJETO Catalogo Tecnico Comercial Tubos de PVC Acesso em: 26/06/19 Nenhuma citação no texto.

HIBELLER R. C. Estática para engenharia LTC, Rio de Janeiro Nenhuma citação no texto.

METALLICA CONSTRUÇÃO Manuais e normas tecnicas Dicas de construção Acesso em: 26/06/19 Nenhuma citação no texto.

GRUPO ARCOENSE Aço inox e carbono Acesso em: 26/06/2019 Nenhuma citação no texto.

APÊNDICE A – TABELA DE CUSTOS

Figura 6 – Tabela de materiais

	Tabela de custos					
Quantidade	Item	Valor				
2	Válvulas de retenção	R\$96,00				
1	Êmbolo de Polipropileno	R\$65,00				
2	Adaptador de mangueira	R\$2,40				
1	Adaptador soldável	R\$4,60				
2	Luva soldável 3/4	R\$2,20				
1	Bucha soldável 60 mm	R\$6,20				
1	Veda rosca	R\$5,00				
1	Adesivo PVC	R\$1,65				
1 m	Tubo soldável 25 mm	R\$2,25				
½ m	Tubo soldável 40 mm	R\$3,88				
½ m	Tubo soldável 60 mm	R\$7,00				
3 m	Mangueira	R\$8,10				
	Valor Total	R\$204,28				

Fonte: Próprios autores

APÊNDICE B - CRONOGRAMA

Integrantes: Riuler Oliveira, Guilherme Henrique, Lara Ellen, Paulo Chaves, Moisés Junior Realce do Periodo: 22 Duração do Plano Início Real % concluída Real (além do plano) % concluída (além do plano) INÍCIO DO PLANO DURAÇÃO DO PERÍODOS PORCENTAGEM CONCLUÍDA INÍCIO REAL DURAÇÃO REAL ATIVIDADE 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Definição de tema 100% Fundamentação teórica Estudo dos materiais à 100% 5 3 serem utilizados Orçamento de 100% construção (protótipo) Modelagem Pistão Desenvolvimento da 100% 10 animação Entrega do relatório 100% parcial Preparação para apresentação parcial 10 100% 11 11 Apresentação parcial 12 Construção do prótotipo 100% 13 13 Testes do protótipo 100% 19 Elaboração do banner Preparação para 100% 21 21 apresentação final Entrega do relatório final 100% 21 21 Apresentação final 100% 22 Apresentação do banner 22 1 22

Figura 7 – Cronograma finalizado

Fonte: Próprios autores

ANEXO A - IMAGEM DA BOMBA

Figura 8 – Bomba em funcionamento

Fonte: Próprios autores