

INSTITUTO FEDERAL DE MINAS GERAIS

Campus Avançado Conselheiro Lafaiete Apostila elaborada pelo docente Alexandre Correia Fernandes

ESTUDO DAS MATRIZES

Definição de matriz

Consideremos a tabela abaixo, construída a partir da coleta de informações sobre o preço do quilo do arroz tipo 1, do feijão preto e do macarrão, em quatro supermercados de uma capital brasileira:

	Supermercado	Supermercado	Supermercado	Supermercado
	A	В	С	D
Arroz	2,40	2,57	2,38	2,49
Feijão	3,02	3,17	2,91	3,20
macarrão	1,99	2,05	1,87	2,12

Uma matriz é uma tabela de elementos dispostos em linhas e colunas.

Portanto, se abstrairmos os significados das linhas e colunas da tabela acima, obteremos a matriz

Uma matriz genérica A, com m linhas e n colunas pode ser representada por

$$A_{m \times n} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$$

em que os índices $\tilde{o}i\ddot{o}$ e $\tilde{o}j\ddot{o}$ indicam, respectivamente, a linha e a coluna à qual pertence o elemento a_{ij} .

Escrevendo uma matriz a partir de sua lei de formação

• Escreva a matriz $A = \left[a_{ij}\right]_{3 \times 2}$, tal que $a_{ij} = 2i \ \emph{o} \ \emph{j} + 1$.

De acordo com os dados fornecidos, a matriz deve ter 3 linhas e duas colunas, ou

De acordo com seja,
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$
.

Substituindo-se i e j pelos valores correspondentes, para cada elemento, obtém-se:

$$\begin{array}{lll} a_{11}=2.1\ \text{\'o}\ 1+1=2 & a_{22}=2.2\ \text{\'o}\ 2+1=3 \\ a_{12}=2.1\ \text{\'o}\ 2+1=1 & a_{31}=2.3\ \text{\'o}\ 1+1=6 \\ a_{21}=2.2\ \text{\'o}\ 1+1=4 & a_{32}=2.3\ \text{\'o}\ 2+1=5 \end{array}$$

Logo,
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 6 & 5 \end{bmatrix}$$
.

Exercícios propostos

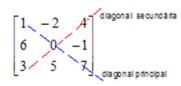
Q1. Determine a matriz $A = \left[a_{ij}\right]_{2x^2}$ tal que $a_{ij} = 2i + j$.

Q2. Dada a matriz
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{5x7}$$
 tal que $A = a_{ij} = \begin{cases} -i^2, se\ i+j\ \'e\ par \\ 2ij, se\ i+j\ \'e\ \'impar \end{cases}$, determine $a_{32} + a_{42}$.

Tipos especiais de matrizes

a) Matriz quadrada ó é aquela cujo número de linhas é igual ao número de colunas.

Numa matriz quadrada de ordem n, os elementos a_{11} , a_{22} , a_{33} , ..., a_{nn} , isto é, os elementos a_{ij} com i=j, constituem a *diagonal principal* da matriz e os elementos a_{ij} para os quais verifica-se que i+j=n+1 constituem a *diagonal secundária* da matriz.



b) Matriz nula ó é aquela em que todos os elementos são nulos, isto é, $a_{ij} = 0$, para todo i e j. É comum indicar-se a matriz nula por $O = \left[0_{ij}\right]_{m \times n}$.

c) Matriz triangular ó é uma matriz quadrada na qual todos os elementos acima ou abaixo da diagonal principal são nulos.

$$\begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 9 & 0 & 5 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 & -1 \\ 0 & 4 & 3 & 2 \\ 0 & 0 & 6 & 5 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$

Matriz triangular inferior

Matriz triangular superior

- **d) Matriz diagonal** ó é uma matriz quadrada em que todos os elementos acima e abaixo da diagonal principal são nulos.
- e) Matriz identidade ó é uma matriz diagonal em que todos os elementos da diagonal principal são iguais a 1. Indica-se a matriz identidade de ordem n por I_n .

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matriz diagonal

Matriz identidade

- f) Matriz linha \acute{o} é aquela que possui apenas 1 linha (m = 1).
- g) Matriz coluna ó é aquela que possui uma única coluna (n = 1)
- h) Matriz simétrica ó é uma matriz quadrada na qual se verifica que $a_{ij} = a_{ji}$.

$$\begin{bmatrix} 2 & 0 & 1 & 7 \end{bmatrix} \qquad \begin{bmatrix} 5 \\ 9 \\ 11 \end{bmatrix} \qquad \begin{bmatrix} a & b & c & d \\ b & e & f & g \\ c & f & i & h \\ d & g & h & o \end{bmatrix}$$
matriz linha matriz coluna matriz simétrica

Igualdade de matrizes

Duas matrizes A e B são ditas *iguais* se, e somente se, têm o mesmo tamanho e seus elementos correspondentes são iguais.

Determinando incógnitas para que duas matrizes sejam iguais

Determine a, b, c e d, sabendo que $\begin{bmatrix} a+b & c-d \\ 2a+b & 3c+d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3 & 8 \end{bmatrix}.$

Da definição de igualdade de matrizes segue que

$$\begin{cases} a+b=1\\ 2a+b=-3 \end{cases}$$
 e
$$\begin{cases} c-d=0\\ 3c+d=8 \end{cases}$$

Solucionando-se os sistemas acima, encontra-se a = 64, b = 5, c = 2 e d = 2.

Operações com matrizes

a) Adição e subtração: A adição e subtração de duas matrizes $A_{m\,x\,n}$ e $B_{m\,x\,n}$, de mesma ordem, é uma matriz $C_{m\,x\,n}$ cujos elementos são obtidos pela soma ou diferença dos elementos correspondentes de A e B, respectivamente.

Propriedades da adição

Dadas as matrizes A, B e C, de mesma ordem, são válidas as seguintes propriedades para a adição de matrizes:

i) Comutativa	A + B = B + A
ii) Associativa	(A+B) + C = A + (B+C)
iii) Elemento neutro	A + 0 = 0 + A = A
iv) Cancelamento	$A = B \Leftrightarrow A + C = B + C$

b) Multiplicação de um número real por uma matriz: Seja $A = \left[a_{ij}\right]_{m \times n}$ e α um número real. A matriz αA , m x n, é a matriz cujos elementos são $b_{ij} = \alpha.a_{ij}$.

Se $\alpha = 61$, obtém-se a matriz *oposta* de A, isto é, a matriz que somada com A dá como resultado a matriz nula.

Propriedades

Dadas as matrizes A e B, de mesma ordem, e os números reais α , α_1 e α_2 , verifica-se que:

- i) $\alpha(A + B) = \alpha A + \alpha B$
- ii) $(\alpha_1 + \alpha_2)A = \alpha_1A + \alpha_2 A$
- iii) 0.A = 0
- iv) $\alpha_1(\alpha_2 A) = (\alpha_1 \alpha_2) A$
- c) Transposição: Dada uma matriz $A = [a_{ij}]_{m \times n}$, denomina-se transposta de A a matriz $A^t = [b_{ij}]_{n \times m}$, cujas linhas são as colunas de A.

Propriedades

i)
$$(A^t)^t = A$$

$$(A + B)^{t} = A^{t} + B^{t}$$

iii)
$$(\alpha A)^t = \alpha A^t$$

Operando matrizes

■ Dadas as matrizes $A = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$ e $B = \begin{bmatrix} 5 & -1 \\ 7 & 4 \end{bmatrix}$, calcule A + B, A \(\delta \) B e $5A + \frac{1}{2}B$.

$$A + B = \begin{bmatrix} 2+5 & 4+(-1) \\ 3+7 & 5+4 \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 10 & 9 \end{bmatrix}$$
$$A - B = \begin{bmatrix} 2-5 & 4-(-1) \\ 3-7 & 5-4 \end{bmatrix} = \begin{bmatrix} -3 & 5 \\ -4 & 1 \end{bmatrix}$$

$$5A + \frac{1}{2}B = 5\begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} 5 & -1 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 10 + \frac{5}{2} & 20 - \frac{1}{2} \\ 15 + \frac{7}{2} & 25 + 2 \end{bmatrix} = \begin{bmatrix} \frac{25}{2} & \frac{39}{2} \\ \frac{37}{2} & 27 \end{bmatrix}$$

Dadas as matrizes $A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \\ 1 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 5 \\ 2 & 0 \\ 3 & -2 \end{bmatrix}$, encontre a matriz X, tal que 2X 6A + 3B = 0

Isolando X, obtém-se $X = \frac{1}{2}A - \frac{3}{2}B$.

Logo,
$$X = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ -1 & 3 \\ 1 & 4 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} -1 & 5 \\ 2 & 0 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 1 + \frac{3}{2} & 0 - \frac{15}{2} \\ -\frac{1}{2} - 3 & \frac{3}{2} \\ \frac{1}{2} - \frac{9}{2} & 2 + 3 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} & -\frac{15}{2} \\ -\frac{7}{2} & \frac{3}{2} \\ -4 & 5 \end{bmatrix}$$

Calcule as matrizes X e Y que verificam as condições $\begin{cases} 2X + Y = 3A + B \\ X - Y = 2A - 3B \end{cases}$ considerando que $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$.

Resolvendo-se o sistema, obtém-se $X = \frac{5}{3}A - \frac{2}{3}B$ e $Y = -\frac{1}{3}A + \frac{7}{3}B$.

Portanto,
$$X = \begin{bmatrix} 1 & 2 \\ -\frac{2}{3} & 1 \end{bmatrix}$$
 e $Y = \begin{bmatrix} 2 & 4 \\ \frac{7}{3} & 2 \end{bmatrix}$.

Sejam
$$A = \begin{bmatrix} 3 & -1 & 3 \\ 4 & 1 & 5 \\ 2 & 1 & 3 \end{bmatrix}$$
 e $B = \begin{bmatrix} 2 & -4 & 5 \\ 0 & 1 & 4 \\ 3 & 2 & 1 \end{bmatrix}$. Calcule $(A + B)^t$

$$A + B = \begin{bmatrix} 5 & -5 & 8 \\ 4 & 2 & 9 \\ 5 & 3 & 4 \end{bmatrix}$$
e, portanto, $(A + B)^t = \begin{bmatrix} 5 & 4 & 5 \\ -5 & 2 & 3 \\ 8 & 9 & 4 \end{bmatrix}$

d) Multiplicação de matrizes: Sejam $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ e $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{n \times p}$ duas matrizes. O produto da matriz A pela matriz B, indicado por AB, é a matriz $C = \begin{bmatrix} c_{ij} \end{bmatrix}_{m \times p}$ tal que o elemento c_{ij} é obtido multiplicando-se ordenadamente os elementos da linha i, da matriz A, pelos elementos da coluna j, da matriz B, e somando-se os produtos obtidos.

Cabe ressaltar que o produto AB só é possível se o número de colunas de A é igual ao número de linhas de B.

Propriedades

- i) Geralmente, $AB \neq BA$.
- ii) AI = IA = A
- iii) A(B + C) = AB + AC
- iv) (A + B)C = AC + BC
- v) (AB)C = A(BC)
- vi) $(AB)^t = B^t A^t$
- vii) 0.A = A.0 = 0

Multiplicando matrizes

■ Dadas as matrizes
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix}$, obtenha a matriz AB^t .

$$AB^{t} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1.1 + 2(-1) & 1.0 + 2.2 & 1.2 + 2.3 \\ 3.1 + 4(-1) & 3.0 + 4.2 & 3.2 + 4.3 \end{bmatrix} = \begin{bmatrix} -1 & 4 & 8 \\ -1 & 8 & 18 \end{bmatrix}$$

Sejam
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Determinar a matriz X, tal que A.X = B.

$$A_{2x2}.X_{m\times n} = B_{2x1} \Rightarrow m = 2 \ e \ n = 1$$
. Logo, a matriz X é do tipo 2 x 1.

Representando X por
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
, segue que $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

Desenvolvendo-se o produto matricial, verifica-se que $\begin{bmatrix} a+2b \\ b \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, ou seja, $\begin{cases} a+2b=3 \\ b=4 \end{cases}$. Logo, $X = \begin{bmatrix} -5 \\ 4 \end{bmatrix}$.

Exercícios propostos

Q3. Determinar os números reais a e b de modo que as matrizes A e B sejam iguais, dadas $A = \begin{bmatrix} 5a - 2b & 6 \\ 1 & a + b \end{bmatrix}$ e $B = \begin{bmatrix} 4 & 6 \\ 1 & 5 \end{bmatrix}$.

Q4. Dadas as matrizes $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 5 \\ 7 & 6 \end{bmatrix}$ e $C = \begin{bmatrix} -1 & 7 \\ 5 & -2 \end{bmatrix}$, determine a matriz X tal que X + A = B \(\text{o} \) C.

Q5. Dadas as matrizes $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, determine a matriz X na equação matricial AX = B.

Matriz inversa

Seja A uma matriz quadrada de ordem n. Se X é uma matriz tal que $AX = I_n$ e $XA = I_n$, então X é chamada de *matriz inversa* de A e é indicada por A^{-1} .

Vale ressaltar que nem toda matriz quadrada admite uma matriz inversa.

Encontrando a inversa de uma matriz

■ Determine, se existir, a inversa da matriz $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$.

Sendo
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$
 e fazendo $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, tem-se:

$$A.A^{-1} = I_2 \Rightarrow \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} a+2c & b+2d \\ -2a+c & -2b+d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Da condição de igualdade de duas matrizes, seguem os seguintes sistemas:

$$\begin{cases} a+2c=1 \\ -2a+c=0 \end{cases} \Rightarrow a = \frac{1}{5} e c = \frac{2}{5}$$

$$\begin{cases} a + 2c = 1 \\ -2a + c = 0 \end{cases} \Rightarrow a = \frac{1}{5} \ e \ c = \frac{2}{5}$$

$$\begin{cases} b + 2d = 0 \\ -2b + d = 1 \end{cases} \Rightarrow b = -\frac{2}{5} \ e \ d = \frac{1}{5}$$

Portanto,
$$A^{-1} = \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{bmatrix}$$
.

Questões propostas

Q6. (UNI-RIO) Dada a matriz $A = \begin{bmatrix} -5 & -3 \\ 3 & 2 \end{bmatrix}$, determine o valor de $A^{61} + A^{t}$ ó I_{2} .

Questões complementares

Q8. (UERJ) A temperatura corporal de um paciente foi medida, em graus Celsius, três vezes ao dia, durante cinco dias. Cada elemento a_{ij} da matriz corresponde à temperatura observada no instante i do dia j.

Determine:

- a) o instante e o dia em que o paciente apresentou a maior temperatura;
- b) a temperatura média do paciente no terceiro dia de observação.

Q9. (UFG) Seja $M = [a_{ij}]_{n \times n}$ uma matriz quadrada de ordem n, onde $a_{ij} = i + j$. Nessas condições, a soma dos elementos da diagonal principal da dessa matriz é:

a)
$$n^2$$

b)
$$2n + 2n^2$$

c)
$$2n + n^2$$

d)
$$n^2 + n$$

a)
$$n^2$$
 b) $2n + 2n^2$ c) $2n + n^2$ d) $n^2 + n$ e) $n + 2n^2$

Q10. (UCS-BA) A equação matricial $\begin{bmatrix} -2 & 1 & 0 \\ 1 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$ é verdadeira se x, y e z

são tais que x + y + z é igual a:

Q11. (UFSC) Sejam $A = [a_{ij}]_{4x3}$ e $B = [b_{ij}]_{3x4}$ duas matrizes definidas por $a_{ij} = i + j$ e $b_{ij} = 2i + j$, respectivamente. Se A.B = C, então qual é o elemento c_{32} da matriz C?

Q12. (UFC-CE) O valor de **a** para que a igualdade matricial $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & a \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ seja verdadeira é:

- a) 1 b) 2 c) 0 d) ó2 e) ó1
- Q13. (UFRS) A matriz C fornece, em reais, o custo das porções de arroz, carne e salada usadas em um restaurante:

$$C = \begin{bmatrix} 1 \\ 3 \\ carne \\ 2 \end{bmatrix} salada$$

A matriz P fornece o número de porções de arroz, carne e salada usadas na composição dos pratos tipo P_1 , P_2 e P_3 desse restaurante:

$$P = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 2 & 0 \end{bmatrix} \begin{array}{ccc} prato P_1 \\ prato P_2 \\ prato P_3 \end{array}$$

A matriz que fornece o custo de produção, em reais, dos pratos P₁, P₂ e P₃ é:

a)
$$\begin{bmatrix} 7 \\ 9 \\ 8 \end{bmatrix}$$
 b) $\begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$ c) $\begin{bmatrix} 9 \\ 11 \\ 4 \end{bmatrix}$ d) $\begin{bmatrix} 2 \\ 6 \\ 8 \end{bmatrix}$ e) $\begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$

Q14. (UFAM) Sejam A, B e C matrizes quadradas quaisquer de ordem n. Então é correto afirmar que:

- a) Se AB = AC, então B = C.
- b) AB = BA
- c) Se $A^2 = 0_n$ (matriz nula), então $A = 0_n$
- d) (AB)C = A(BC)e) $(A+B)^2 = A^2 + 2AB+B^2$

Q15. (UFRRJ)Dada a matriz $A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$ denotamos por A^{-1} a matriz inversa de A. Então $A + A^{-1}$ é igual a:

a)
$$\begin{bmatrix} 2 & 3 & 2 & & & & & \\ 2 & 3 & 2 & & & & \\ 1 & 0 & & & & & \\ 2 & 0 & & & & \\ 0 & -1 & & & & \\ d) & \begin{bmatrix} 0 & -1 & & & \\ 2 & 2 & 2 & \\ \hline 2 & 2 & 2 & \\ \end{bmatrix}$$
 e) $\begin{bmatrix} 2 & 4 & & \\ -2 & 0 & \\ \end{bmatrix}$

Q16. (UFRRJ) Uma fábrica de guarda-roupas utiliza três tipos de fechaduras (dourada, prateada e bronzeada) para guarda-roupas em mogno e cerejeira, nos modelo básico, luxo e requinte. A tabela 1 mostra a produção de móveis durante o mês de outubro de 2005, e a tabela 2, a quantidade de fechaduras utilizadas em cada tipo de armário no mesmo mês.

Tabela1: Produção de armários em outubro de 2005.

Modelo Madeira	Básico	Luxo	Requinte
Mogno	3	5	4
Cerejeira	4	3	5

Tabela 2: Fechaduras usadas em outubro de 2005

Madeira Tipo	Mogno	Cerejeira
Dourada	10	12
Prateada	8	8
Bronzeada	4	6

A quantidade de fechaduras usadas nos armários do modelo requinte nesse mês foi de:

- a) 170
- b) 192
- c) 120
- d) 218
- e) 188

Q17. (Udesc) Considere as matrizes $A=\begin{bmatrix}1&2\\2&1\end{bmatrix}$, $I=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ e $O=\begin{bmatrix}0&0\\0&0\end{bmatrix}$ a soma dos valores numéricos de x, para os quais a igualdade A^2 - 2 A ó 3I=0 é verificada é:

- a) x = 0
- b) x = 2
- c) x = 1
- d) x = -2
- e) x = -1

Q18. (UEL-PR) uma das formas de se enviar uma mensagem secreta é por meio de códigos matemáticos, seguindo os passos:

- 1- Tanto o destinatário quanto o remetente possuem uma matriz chave C.
- 2- O destinatário recebe do remetente uma matriz **P**, tal que MC=P, onde **M** é matriz mensagem a ser decodificada.
- 3- Cada número da matriz M corresponde a uma letra do alfabeto: 1=a, 2=b, 3=c,...,23=z
- 4- Consideremos o alfabeto com 23 letras, excluindo as letras k,w e y.
- 5- O número zero corresponde ao ponto de exclamação.

- 6- A mensagem é lida, encontrando a matriz M, fazendo a correspondência número/letra e ordenando as letras por linhas da matriz conforme segue: m₁₁ m₁₂ $m_{13} \ m_{21} \ m_{22} \ m_{23} \ m_{31} \ m_{32} \ m_{33}.$
- Considere as matrizes $C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$ e $P = \begin{pmatrix} 2 & -10 & 1 \\ 18 & 38 & 17 \\ 19 & 14 & 0 \end{pmatrix}$. Com base nos conhecimentos e informações descritas, assinale a alternativa que apresenta a mensagem

que foi enviada por meio da matriz M.

- a) Boasorte!
- b) Boaprova!
- c) Boatarde!
- d)Ajudeme! e)Socorro!

DETERMINANTE

O determinante de uma matriz quadrada $A = [a_{ij}]$, de ordem n, é um número real (único) a ela associado, que pode ser indicado por det A ou |A| ou det $= [a_{ij}]$.

Determinante de uma matriz quadrada de ordem 1

Seja a matriz $A = [a_{11}]_{1x1}$. Seu determinante é o valor de seu único elemento, ou seja,

$$\det A = |a_{11}| = a_{11}$$

Determinante de uma matriz quadrada de ordem 2

O determinante da matriz quadrada de ordem 2 $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ é o número real obtido fazendo o produto dos elementos de sua diagonal principal menos o produto dos elementos de sua diagonal secundária, isto é,

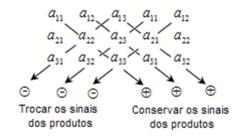
$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}.a_{22} - a_{12}.a_{21}$$

Determinante de uma matriz quadrada de ordem 3 ó Regra de Sarrus

O determinante de uma matriz quadrada de ordem 3 pode ser obtido a partir da regra prática de Sarrus, apresentada na seqüência.

Seja a matriz
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
.

Inicialmente deve-se repetir as duas primeiras colunas à direita da matriz, conforme o esquema a seguir:



Em seguida, deve-se conservar os sinais dos produtos obtidos na direção da diagonal principal e inverter os sinais dos produtos obtidos na direção da diagonal secundária.

O determinante da matriz quadrada de ordem 3 é a soma dos valores assim obtidos.

Calculando determinantes

Calcule os determinantes das matrizes abaixo:

a)
$$A = \begin{bmatrix} -7 \end{bmatrix}$$
 b) $B = \begin{bmatrix} \sqrt{2} & -3 \\ 5 & \sqrt{8} \end{bmatrix}$ c) $C = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ -2 & -1 & 2 \end{bmatrix}$

Das regras apresentadas acima, segue que

a) det A = -7;
b) det B =
$$\sqrt{2}.\sqrt{8} - (-3).5 = 4 + 15 = 19$$

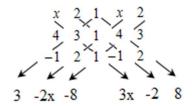
c)

Resolva a equação $\begin{vmatrix} 2^x & 2^2 \\ 2^x & 2^x \end{vmatrix} = 2^5$.

Desenvolvendo-se o determinante de 2^a ordem, obtém-se a equação exponencial $\left(2^x\right)^2-4.2^x=2^5$, que pode ser resolvida fazendo-se $2^x=y$, observando que y>0. $\left(2^x\right)^2-4.2^x=2^5 \Rightarrow y^2$ ó 4y ó $32=0 \Rightarrow y=6$ 4 (impossível) ou y=8 $y=8 \Rightarrow 2^x=8 \Rightarrow 2^x=2^3 \Rightarrow x=3$.

Resolva a inequação
$$\begin{vmatrix} x & 2 & 1 \\ 4 & 3 & 1 \\ -1 & 2 & 1 \end{vmatrix} \le \begin{vmatrix} 3 & 2 \\ 1 & x \end{vmatrix}.$$

Desenvolvendo-se, pela regra de Sarrus, o determinante de 3ª ordem contido no primeiro membro da inequação acima, encontra-se



donde segue a inequação do 1º grau:

$$3-2x-8+3x-2+8 \le 3x-2$$

$$-2x \le -3 \quad (-1)$$

$$2x \ge 3$$

$$x \ge \frac{3}{2}$$

$$S = \left\{ x \in IR \mid x \ge \frac{3}{2} \right\}$$

Questões propostas

Q1. Calcule os determinantes:

Q2. Determine x tal que:

Q3. (UFBA) O determinante associado à matriz 20 22 212 é igual à maior das quação 1022 22 2. Determine o menor valor de y.

Determinante de matrizes quadradas de ordem n ó Teorema de Laplace

As regras apresentadas anteriormente permitiram o cálculo de determinantes de 1^a, 2^a e 3^a ordens. Todavia, necessária se faz, também, a apresentação de um método adequado para o cálculo de determinantes das demais ordens.

Para este propósito, há o Teorema de Laplace, que possibilita o cálculo do determinante de uma matriz quadrada de ordem $n (n \ge 2)$.

O teorema de Laplace está diretamente relacionado ao conceito de cofator de um elemento da matriz A, apresentado a seguir:

Dada uma matriz quadrada $A = [a_{ij}]$, de ordem n (n \geq 2), denomina-se *cofator do elemento a*_{ij} o produto de (-1)^{i+j} pelo determinante D_{ij} da matriz obtida quando se retira de A a linha i e a coluna j.

O cofator do elemento a_{ij} será indicado por C_{ij} ou por Δ_{ij} .

Calculando cofatores

Dada a matriz
$$A = \begin{bmatrix} -1 & 2 & 3 & -4 \\ 4 & 2 & 0 & 0 \\ -1 & 2 & -3 & 0 \\ 2 & 5 & 3 & 1 \end{bmatrix}$$
, determine C_{21} e C_{22} .

$$C_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 3 & -4 \\ 2 & -3 & 0 \\ 5 & 3 & 1 \end{vmatrix} = (-1)(-6 - 24 - 60 - 6) = 96$$

$$C_{22} = (-1)^{2+2} \begin{vmatrix} -1 & 3 & -4 \\ -1 & -3 & 0 \\ 2 & 3 & 1 \end{vmatrix} = (+1)(3 + 12 - 24 + 3) = -6$$

O teorema de Laplace

O determinante associado a uma matriz quadrada $A = [a_{ij}]$, de ordem $n \ge 2$, é o número que se obtém pela soma dos produtos dos elementos de uma fila (linha ou coluna) qualquer pelos seus respectivos cofatores.

Vale ressaltar que, independente da linha ou coluna escolhida, o resultado é sempre o mesmo. Entretanto, é conveniente optar-se pela fila que possui mais zeros a fim de reduzir a quantidade de cálculos necessários.

Calculando um determinante pelo Teorema de Laplace.

Calcule o determinante da matriz
$$A = \begin{bmatrix} -1 & 2 & 3 & -4 \\ 4 & 2 & 0 & 0 \\ -1 & 2 & -3 & 0 \\ 2 & 5 & 3 & 1 \end{bmatrix}$$
.

Será escolhida a 2ª linha (pois ela possui dois elementos iguais a zero).

$$\det A = 4.C_{21} + 2.C_{22} + 0.C_{23} + 0.C_{24}.$$

Como C_{21} e C_{22} já foram obtidos no exemplo anterior e não há a necessidade de calcular-se C_{23} e C_{24} , uma vez que eles estão multiplicados por zero, segue que: det A = 4.96 + 2.(-6) = 372.

Questão proposta

Q4. Calcule o determinante da matriz
$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 2 & 3 & 4 & 3 \\ 0 & 0 & 1 & 5 \\ -2 & 2 & 4 & 1 \end{bmatrix}$$
.

Propriedades dos determinantes

- i) Se todos os elementos de uma fila (linha ou coluna) de uma matriz A são nulos, então det A=0.
- ii) O determinante de uma matriz quadrada A é igual ao determinante de sua transposta, ou seja, det $A = \det A^{t}$.
- iii) Ao multiplicar-se uma linha da matriz por uma constante α , o determinante também fica multiplicado pela mesma constante α .
- iv) O determinante troca de sinal ao trocar-se a posição de duas linhas ou colunas.
- v) O determinante de uma matriz que possui duas linhas (ou colunas) iguais ou proporcionais é zero.
- vi) $\det(A.B) = \det A \cdot \det B$.
- vii) Se todos os elementos de uma matriz quadrada A, situados de um mesmo lado da diagonal principal, forem nulos, então o determinante de A será igual ao produto dos elementos de sua diagonal principal.

Aplicando as propriedades no cálculo de determinantes

det A = (-1).2.(-3).1 = 6, uma vez que, na matriz A, todos os elementos acima da diagonal principal são nulos.

Sendo
$$A = \begin{bmatrix} 0 & 2 & 3 \\ -1 & 2 & 1 \\ 2 & -4 & -2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1/3 & \frac{3}{5} & 1/2 \\ -1 & 0 & -3 \\ 0,7 & -2 & -2 \end{bmatrix}$, calcule det (AB).

Na matriz A, a 3^a linha é proporcional à 2^a ; portanto, det A = 0. Como det (AB) = det A. det B, pode-se afirmar que det (AB) = 0, independentemente do valor de det B.

Determinante da matriz inversa

É possível provar-se que o determinante da matriz inversa de A é igual ao inverso multiplicativo do determinante de A, ou seja,

$$\det A^{-1} = \frac{1}{\det A}$$

Logo, se det A = 0, a matriz A não admite inversa.

Calculando o determinante da inversa de uma matriz

Dada a matriz $M = \begin{bmatrix} 0 & 1 & -2 \\ 3 & 0 & -4 \\ 5 & -6 & 0 \end{bmatrix}$, calcule det $M^t + \det M^{-1}$.

A partir da regra de Sarrus, obtém-se det M = 16.

$$\det M = \det M^{t} \Rightarrow \det M^{t} = 16$$

$$\det M^{-1} = \frac{1}{\det M} \Rightarrow \det M^{-1} = \frac{1}{16}$$

$$\text{Logo, } \det M^{t} + \det M^{-1} = 16 + \frac{1}{16} = \frac{257}{16}$$

Sendo $A = \begin{bmatrix} 1 & 2 & x \\ 3 & 2 & 2 \\ 0 & 1 & 1 \end{bmatrix}$, encontre x para que a matriz A admita inversa.

Utilizando-se a regra de Sarrus, verifica-se que det A = 3x ó6. Para A ser invertível, é necessário que det $A \neq 0$. Portanto, $x \neq 2$.

Questão proposta

inversa de A.

Questões complementares

Q7. (Cefet-PR) Uma matriz A quadrada, de ordem 3, possui determinante igual a 2. O valor de det (2 . A⁻¹) é:

$$c)$$
 5

Q9. (PUC-RS) Se a matriz $A = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ tem inversa, então det A^{-1} é:

d)
$$\frac{?}{??????}$$

e)
$$\frac{?}{(????^2)}$$

19				
	Sendo \mathbf{x} e \mathbf{y} , respectivaments verdade que $\frac{\mathbb{Z}}{\mathbb{Z}}$ é igual a:		ntes das matriz	es ? ? ? ? e
a) 2 22	b) - 2	c) 20	d) -20	e) 27
Q11. (Ufam) Con	sidere a matriz $A = \overline{2}^{-4}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ Os valore	s de k que tor	nam nulo o

determinante da matriz A ó kI, sendo I a matriz identidade, são:

- a) 0 e 5
- b) -2 e 4
- c) 0 e 4
- d) -4 e 2
- e) -4 e 0

? ? ? Q12. (Unit-SE) Se o determinante $\boxed{0}$ 1 3 $\boxed{2}$ é igual a 5, então o valor de \mathbf{x} é: 1 2 2

a)
$$-\frac{7}{2}$$
 b) $-\frac{7}{2}$ c) $-\frac{7}{2}$ d) $\frac{7}{2}$ e) $\frac{7}{2}$

Q13. (UFU-MG) Considere as matrizes $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \end{bmatrix}$ e $B = \begin{bmatrix} 2 & -1 & 8 & -5 \\ -2 & 7 & 4 \end{bmatrix}$. Para que o determinante da matriz A . B^t , em que B^t denota a matriz transposta da matriz **B**, seja igual a 138, o valor de **x** será igual a:

- a) 6
- b) 7
- c) 8
- d) 9

Q14. (Unirio-RJ) Considere a matriz A=

por $f(x) = \sqrt{\det 2}$ e g(x) = x ó 1. Calcule todos os valores de \mathbf{x} reais tais que f(x) = g(x).

Q15. (Ufscar δ SP) Seja A = (a_{ij}) uma matriz quadrada de ordem 3 tal que, $a_{ij}=2$, 2, 2, 2, 2, com p inteiro positivo. Em tais condições, é concreto afirmar que, necessariamente, det A é múltiplo de:

- a) 2
- b) 3
- c) 5
- d) 7
- e) 11

Q16. (Uneb-BA) O número de elementos inteiros do conjunto solução da inequação 2 - ? 2 - ? 2 - ? ? \ge 0 é:

- a) 0
- b) 1 c) 2 d) 3
- e) 4

SISTEMAS DE EQUAÇÕES LINEARES

Equação linear

Denomina-se equação linear toda equação da forma $a_1x_1+a_2x_2+...+a_nx_n=b$, em que:

 a_1 , a_2 , ..., a_n são os coeficientes da equação;

 $x_1, x_2, ..., x_n$ são as incógnitas e

b é o termo independente.

Uma n-upla ordenada, isto é, uma seqüência de n números reais $(\alpha_1, \alpha_2, ..., \alpha_n)$ é uma solução da equação linear $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ se, ao substituir-se $x_1, x_2, ..., x_n$ respectivamente por $\alpha_1, \alpha_2, ..., \alpha_n$, a sentença $a_1\alpha_1 + a_2\alpha_2 + ... + a_n\alpha_n = b$ for verdadeira.

Verificando uma solução de uma equação linear

• Verifique se (1, 62, 2) é solução da equação linear 2x ó y + 2z = 8.

Substituindo-se x, y e z por 1, 62, e 2, respectivamente, obtém-se a sentença 2(1) 6(62) + 2.2 = 8, que é verdadeira. Portanto, o terno ordenado (1, 62, 2) é uma solução da referida equação.

Sistemas de equações lineares

Chama-se sistema de equações lineares com m equações e n incógnitas $x_1, x_2, ..., x_n$ a todo sistema da forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Uma solução do sistema é uma n-upla ordenada de números $(\alpha_1, \alpha_2, ..., \alpha_n)$ que satisfaz, simultaneamente, todas as m equações.

Um sistema de equações lineares pode ser escrito na forma matricial:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \text{ em que}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \text{ em que}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \text{ \'e chamada de matriz dos coeficientes, } \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ \'e a matriz das}$$

$$\begin{bmatrix} b_1 \end{bmatrix}$$

incógnitas e $\begin{bmatrix} b_1 \\ b_2 \\ \vdots \end{bmatrix}$ é a matriz dos termos independentes.

Pode-se, também, associar ao sistema a matriz $\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{nn} & a_{nn} & b_{nn} \end{bmatrix},$

denominada matriz ampliada do sistema.

Se a matriz dos termos independentes é uma matriz nula, então o sistema é denominado sistema linear homogêneo.

Sistemas equivalentes

Dois sistemas são ditos equivalentes quanto admitem o mesmo conjunto solução.

Pode-se transformar um dado sistema num sistema equivalente, mais simples de se resolver, a partir da aplicação de uma ou mais das seguintes transformações elementares:

1^a) Troca de duas equações de posição entre si.

Os sistemas $S_1 = \begin{cases} x + y = 4 \\ 2x + y = 7 \end{cases}$ e $S_2 = \begin{cases} 2x + y = 7 \\ x + y = 4 \end{cases}$ são equivalentes pois, de um para o outro, apenas trocou-se a 1ª e 2ª equações de posição.

Seu conjunto solução é $S = \{(3,1)\}.$

2ª) Multiplicação de uma das equações por uma constante não nula.

Os sistemas
$$S_1 = \begin{cases} x + y = 10 \\ x + 3y = 14 \end{cases}$$
 e $S_2 = \begin{cases} -x - y = -10 \\ x + 3y = 14 \end{cases}$ são equivalentes pois

apenas multiplicou-se a 1^a equação do sistema S_1 pela constante ó1 para obter-se a 1^a equação do sistema S_2 .

Seu conjunto solução é $S = \{(8,2)\}.$

3ª) Multiplicação de qualquer equação por uma constante não nula e soma do resultado a outra equação do sistema.

Os sistemas
$$S_1 = \begin{cases} 2x + y = 5 \\ 8x - y = 5 \end{cases}$$
 e $S_2 = \begin{cases} 2x + y = 5 \\ 0x - 5y = -15 \end{cases}$ são equivalentes pois a 2^a

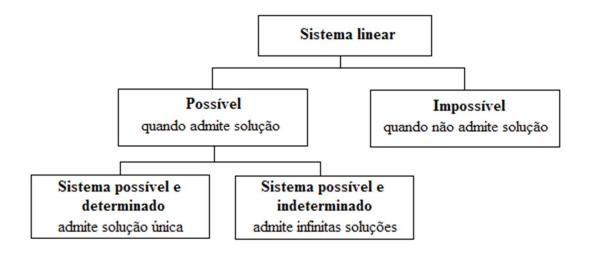
equação do sistema S_2 foi obtida pela soma da 2^a equação de S_1 com o produto da 1^a equação de S_1 pela constante ó 4.

Seu conjunto solução é $S = \{(1,3)\}.$

Vale ressaltar que as transformações elementares apresentadas podem, perfeitamente, ser aplicadas às linhas da matriz ampliada associada a um sistema.

Classificação de um sistema linear

Quanto ao número de soluções, um sistema linear pode ser classificado da seguinte forma:



Resolução de um sistema linear através da Regra de Cramer

A regra de Cramer foi desenvolvida pelo matemático suíço Gabriel Cramer (1704-1752). Trata-se de uma regra prática utilizada na resolução de sistemas lineares em que o número de equações é *igual* ao número de incógnitas.

Consideremos o sistema de equações lineares

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

e seja D o determinante associado à matriz dos coeficientes, isto é,

$$D = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

Seja, ainda, o determinante Dx_i , $1 \le i \le n$, obtido quando se substitui, no determinante D, a i-ésima coluna pela coluna dos termos independentes.

Se o determinante D é diferente de zero, o sistema é *possível e determinado* e seu conjunto solução é $S = \left\{ \left(\frac{D_1}{D}, \frac{D_2}{D}, \frac{D_3}{D}, ..., \frac{D_n}{D} \right) \right\}$.

Se $D = D_{x1} = D_{x2} = ... = D_{xn} = 0$, o sistema será *possível e indeterminado*, sendo que, para $n \ge 3$, tal condição só será válida se não houver equações com coeficientes das incógnitas respectivamente proporcionais e termos independentes não-proporcionais.

Se D = 0 e existe $Dx_i \neq 0$, $1 \leq i \leq n$, o sistema será *impossível*.

Resolvendo e discutindo um sistema de equações lineares pela regra de Cramer

Utilizando a regra de Cramer, resolva e classifique o sistema $\begin{cases} x+y+z=6\\ x-y-z=-4\\ 2x-y+z=1 \end{cases}$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 2 & -1 & 1 \end{vmatrix} \Rightarrow D = -4$$

$$D_x = \begin{vmatrix} 6 & 1 & 1 \\ -4 & -1 & -1 \\ 1 & -1 & 1 \end{vmatrix} \Rightarrow D_x = -4$$

$$D_y = \begin{vmatrix} 1 & 6 & 1 \\ 1 & -4 & -1 \\ 2 & 1 & 1 \end{vmatrix} \Rightarrow D_y = -12$$

$$D_z = \begin{vmatrix} 1 & 1 & 6 \\ 1 & -1 & -4 \\ 2 & -1 & 1 \end{vmatrix} \Rightarrow D_z = -8$$

Logo,
$$x = \frac{D_x}{D} = \frac{-4}{-4} \Rightarrow x = 1;$$
 $y = \frac{D_y}{D} = \frac{-12}{-4} \Rightarrow y = 3$ $e \ z = \frac{D_z}{D} = \frac{-8}{-4} \Rightarrow z = 2$

•

Portanto, o sistema é possível e determinado e seu conjunto solução é S={(1, 3, 2)}.

Determine p de modo que o sistema $\begin{cases} 4x + (p-2)y = 0 \\ (p+1)x + 7y = 10 \end{cases}$ seja impossível.

Para que o sistema seja impossível, deve-se ter D = 0 e $D_x \neq 0$ ou $D_y \neq 0$. Logo:

$$D = \begin{vmatrix} 4 & p-2 \\ p+1 & 7 \end{vmatrix} = -p^2 + p + 30$$

$$D_x = \begin{vmatrix} 0 & p-2 \\ 10 & 7 \end{vmatrix} = -10p + 20$$

$$D_y = \begin{vmatrix} 4 & 0 \\ p+1 & 10 \end{vmatrix} = 40$$

$$D = 0 \Rightarrow p = 65$$
 ou $p = 6$.

Como para ambos os valores de p o determinante D_x é diferente de zero, ambos fazem com que o sistema seja impossível.

Sistemas homogêneos

Denomina-se sistema linear homogêneo aquele em que todos os termos independentes são nulos.

Por exemplo, o sistema linear
$$S = \begin{cases} x + y + z = 0 \\ x - y - z = 0 \end{cases}$$
 é homogêneo. $x - y + 3z = 0$

Todo sistema homogêneo é possível, uma vez que admite, pelo menos, a solução trivial $S = \{(0, 0, ..., 0)\}.$

Se, além da solução trivial, o sistema linear homogêneo admitir alguma solução não trivial, ele será *indeterminado*.

Caso contrário, será determinado.

Para a discussão de um sistema linear homogêneo de n equações com n incógnitas, é suficiente a análise do determinante õDö associado à matriz dos coeficientes das incógnitas, a saber:

- Se D \neq 0 \Rightarrow Sistema possível e determinado;
- Se $D = 0 \Rightarrow$ Sistema possível e indeterminado

Criando condições para que um sistema linear homogêneo admita soluções não triviais

Determine λ para que o sistema $\begin{cases} x + y - \lambda z = 0 \\ x + \lambda y - z = 0 \end{cases}$ admita outras soluções além $\begin{cases} x + y - \lambda z = 0 \\ x + (\lambda + 1)y + z = 0 \end{cases}$

da solução trivial (0,0,0).

O sistema admitirá outras soluções além da solução trivial se for possível e indeterminado.

Basta, portanto, que D = 0, ou seja;

$$\begin{vmatrix} 1 & 1 & -\lambda \\ 1 & \lambda & -1 \\ 1 & \lambda + 1 & 1 \end{vmatrix} = 0 \Rightarrow \lambda - 1 = 0 \Rightarrow \lambda = 1.$$

Questões propostas

Q1. Aplicando a regra de Cramer, resolva os sistemas a seguir:

a)
$$\begin{cases} x + 2y = 5 \\ 2x - 3y = -4 \end{cases}$$
 b)
$$\begin{cases} x + 2y + z = 7 \\ 2x + 3y - z = -1 \\ 4x - y + 2z = 18 \end{cases}$$
 c)
$$\begin{cases} x - y + z = 3 \\ 2x + y - z = 0 \\ 3x - y + 2z = 6 \end{cases}$$

d)
$$\begin{cases} 2^{x} + 2^{y} + 2^{z} = 7\\ 2^{x+1} + 2^{y} - 2^{z} = 9\\ 2^{x} - 2^{y+1} + 2^{z+1} = 2 \end{cases}$$

Q2. Calcular o valor de **a** para que o sistema $\begin{cases} -x + y - z = 0 \\ x - y + az = 0 \end{cases}$ tenha somente a solução trivial

trivial.

- Q3. Determine α de modo que o sistema $\begin{cases} 3x + 2y = 3 \\ \alpha x + y = 4 \end{cases}$ seja impossível.
- Q4. (Uerj-adaptado) João contou os coelhos, os patos e os bois que havia em sua fazenda, obtendo um total de 340 animais. A seguir, verificou que o número de coelhos era o triplo do de patos e que o número de bois excedia em 20 unidade o total de coelhos e patos. Determine o número de patos que há na fazenda.

Resolução de um sistema linear através de escalonamento

O escalonamento é um processo de resolução de sistemas lineares que consiste na aplicação de transformações elementares num dado sistema a fim de obter um sistema equivalente, mais simples de ser solucionado, uma vez que, nesse novo sistema, o número de coeficientes de incógnitas nulos, que antecede o primeiro coeficiente não nulo, aumenta, de equação para equação.

São exemplos de sistemas escalonados:

$$S_{1} = \begin{cases} x - 3y + 2z = 8 \\ -y - 5z = -25 \\ -28z = -140 \end{cases} e S_{2} = \begin{cases} 9x - 2y + 3z - w = 1 \\ -y - 2z + 4w = 6 \\ 5z + 3w = -4 \\ 0w = 5 \end{cases}$$

Ao observarmos os sistemas acima, verificamos que, de uma equação para a seguinte, sempre õdesapareceö uma incógnita, da esquerda para a direita, o que faz com que a quantidade de zeros aumente, de uma linha para outra, na matriz ampliada associada ao sistema, conforme podemos perceber nas matrizes abaixo, correspondentes aos sistemas S_1 e S_2 , respectivamente:

$$\begin{bmatrix} 1 & -3 & 2 & 8 \\ 0 & -1 & -5 & -25 \\ 0 & 0 & -28 & -140 \end{bmatrix} e \begin{bmatrix} 9 & -2 & 3 & -1 & 1 \\ 0 & -1 & -2 & 4 & 6 \\ 0 & 0 & 5 & 3 & -4 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Solucionar um sistema escalonado é uma tarefa bastante simples.

Na 3^a equação do sistema S_1 , anteriormente apresentado, é fácil perceber que z = 5. Substituindo z por 5, na 2^a equação, concluímos que y = 0. Substituindo y e z por 0 e 5, respectivamente, na 1^a equação, obtemos x = 62.

Portanto,
$$S = \{(62, 0, 5)\}.$$

No sistema S_2 , notamos que não existe valor para w tal que 0.w = 5. Portanto, o sistema S_2 é impossível, ou seja, $S = \emptyset$.

A essa altura, caro leitor, você já deve estar se perguntando como é possível escalonar um sistema linear.

Conforme dissemos anteriormente, implementamos transformações elementares às equações do sistema (ou às linhas da matriz ampliada associada a ele).

A fim de que você se acostume com a notação empregada na resolução dos seguintes exemplos, faremos uma breve explicação sobre ela, a saber:

- $(L_i \leftrightarrow L_j)$ significa que a i-ésima linha e a j-ésima linha foram permutadas, isto é, trocaram de posição entre si.
- $(L_i \rightarrow kL_i)$ significa que a i-ésima linha foi multiplicada pela constante não nula k.
- $(L_i \rightarrow L_i + kL_j)$ significa que a i-ésima linha foi substituída pela soma da i-ésima linha com o produto da j-ésima linha pela constante não nula k.

Escalonando sistemas

Escalone e resolva o sistema $\begin{cases} x + 2y - z = 0 \\ 3x - y + 2z = 1 \\ 2x + 3y + z = 7 \end{cases}$

Seja
$$M = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 3 & -1 & 2 & 1 \\ 2 & 3 & 1 & 7 \end{bmatrix}$$
 a matriz ampliada associada ao sistema.
$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 3 & -1 & 2 & 1 \\ 2 & 3 & 1 & 7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -7 & 5 & 1 \\ 0 & -1 & 3 & 7 \end{bmatrix} (L_2 \to L_2 - 3L_1)$$
$$\Rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -7 & 5 & 1 \\ 0 & 0 & \frac{16}{7} & \frac{48}{7} \end{bmatrix} (L_3 \to L_3 - \frac{1}{7}L_2)$$
$$\Rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -7 & 5 & 1 \\ 0 & 0 & 16 & 48 \end{bmatrix} (L_3 \to 7L_3)$$

Logo,
$$\begin{cases} x + 2y - z = 0 \\ -7y + 5z = 1 \text{ \'e um sistema escalonado equivalente ao sistema dado} \\ 16z = 48 \end{cases}$$
 exercício.

no exercício.

Resolvendo-o ode baixo para cimao, sua última equação fornece o valor da incógnita z (z = 3).

Substituindo-se o valor de z na segunda equação:

$$-7y + 5z = 1 \Rightarrow -7y + 15 = 1 \Rightarrow y = 2$$

Substituindo-se os valores de z e y na primeira equação:

$$x + 2y - z = 0 \Rightarrow x + 4 - 3 = 0 \Rightarrow x = -1$$

Logo,
$$S = \{(-1, 2, 3)\}.$$

Escalone e resolva o sistema
$$\begin{cases} 3x + y - z = 0 \\ -x + y + 2z = 1. \\ 2x + 2y + z = 2 \end{cases}$$

A matriz ampliada associada ao sistema é $\begin{bmatrix} 3 & 1 & -1 & 0 \\ -1 & 1 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix}.$

$$\begin{bmatrix} 3 & 1 & -1 & 0 \\ -1 & 1 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & -2 & -2 \\ -1 & 1 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix} (L_1 \to L_1 - L_3)$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & -2 & -2 \\ 0 & 0 & 0 & -1 \\ 0 & 4 & 5 & 6 \end{bmatrix} (L_2 \to L_2 + L_1)$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & -2 & -2 \\ 0 & 4 & 5 & 6 \\ 0 & 0 & 0 & -1 \end{bmatrix} (L_2 \leftrightarrow L_3)$$

O sistema
$$\begin{cases} x - y - 2z = -2 \\ 4y + 5z = 6 \end{cases}$$
 está escalonado e é equivalente ao sistema dado.
$$0z = -1$$

Como não existe z real tal que 0.z = 61, conclui-se que o sistema é impossível e, portanto, $S = \emptyset$.

Escalone e resolva o sistema $\begin{cases} x + y - z = -2 \\ 2x + 2y - z = 1 \end{cases}$

A matriz ampliada associada ao sistema é $\begin{bmatrix} 1 & 1 & -1 & -2 \\ 2 & 2 & -1 & 1 \end{bmatrix}$.

$$\begin{bmatrix} 1 & 1 & -1 & -2 \\ 2 & 2 & -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 0 & 1 & 5 \end{bmatrix} L_2 \to (L_2 - 2L_1)$$

O sistema $\begin{cases} x+y-z=-2\\ z=5 \end{cases}$ está escalonado e é equivalente ao sistema dado.

Substituindo z por 5, na 1^a equação, obtem-se a equação x + y = 3, que possui infinitas soluções. Logo, o sistema é possível e indeterminado.

Atribuindo a x um valor arbitrário α , determina-se o valor de y em função de α . Tem-se, assim, que y=3 ó α .

Portanto, $S = \{(\alpha, 3 \circ \alpha, 5), \text{ em que } \alpha \in IR\}$ é a solução geral do sistema sendo que, para cada valor específico dado a α, obtém-se uma solução particular do referido sistema.

Observações:

- Todo sistema escalonado em que o número de equações é menor que o número de incógnitas é possível e indeterminado.
- Se, após escalonado, um sistema apresentar alguma linha do tipo (0 0 0 ... 0 k), com $k \neq 0$, o sistema será impossível.

Discutindo um sistema linear

Discuta o sistema $\begin{cases} x - 2y + pz = 1 \\ x - y - z = 2 \\ -x + 2y - 2z = q \end{cases}$ em função dos parâmetros p e q.

Seja D =
$$\begin{vmatrix} 1 & -2 & p \\ 1 & -1 & -1 \\ -1 & 2 & -2 \end{vmatrix}$$
 o determinante associado à matriz dos coeficientes do

referido sistema.

É sabido que, se $D \neq 0$, o sistema é possível e determinado.

$$D \neq 0 \Rightarrow \begin{vmatrix} 1 & -2 & p \\ 1 & -1 & -1 \\ -1 & 2 & -2 \end{vmatrix} \neq 0 \Rightarrow p \neq 2.$$

Logo, se $p \neq 2$, o sistema será possível e determinado.

Se p = 2, tem-se o sistema $\begin{cases} x - 2y + 2z = 1 \\ x - y - z = 2 \end{cases}$ que é equivalente ao sistema $\begin{cases} x - 2y + 2z = 1 \\ -x + 2y - 2z = q \end{cases}$ escalonado $\begin{cases} x - 2y + 2z = 1 \\ y - 3z = 1 \\ 0z = q + 1 \end{cases}$

escalonado
$$\begin{cases} x - 2y + 2z = 1\\ y - 3z = 1\\ 0z = q + 1 \end{cases}$$

A igualdade presente na 3ª equação desse último sistema será verdadeira se q+1 = 0 e, portanto, q = ó1; o que fará com que o sistema seja possível e indeterminado.

Na hipótese contrária ($q \neq ó1$), o sistema será impossível.

Em resumo:

- Se $p \neq 2$, o sistema será possível e determinado.
- Se p = 2 e q = 61, o sistema será possível e indeterminado.
- Se p = 2 e $q \ne 61$, o sistema será impossível.

Questões propostas

Q5. (Ufac) Em relação ao sistema linear (2): $\begin{cases} x+y-z=0\\ 2y+z=4\\ -x+y+z=2 \end{cases}$, qual é a única proposição errada dentre as dos itens abaixo?

- a) A matriz dos coeficientes de (2) é inversível
- b) O conjunto solução de (2) é finito
- c) O sistema (2) é possível e determinado
- d) O método de G. Cramer(1704-1752) é preciso na obtenção do conjunto solução de (2).
- e) Não existem sistemas lineares equivalentes a (2).

Q6. (UFV-MG) No parque de diversões Dia Feliz, os ingressos custam R\$10,00 para adultos e R\$6,00 para crianças. No último domingo, com a venda de 400 ingressos, a arrecadação foi de R\$3000,00. A razão entre o número de adultos e crianças pagantes foi:

a)
$$\frac{7}{2}$$
 b) $\frac{7}{2}$ c) $\frac{7}{2}$ d) $\frac{7}{2}$ e) $\frac{7}{2}$

Q7. (UFSM-RS) A remoção de um volume de 540m³ de entulho da construção de uma obra viária foi feita com dois tipos de caminhões. O primeiro tem capacidade de carga de 6m³, com custo de R\$30,00 por viagem. O segundo tem capacidade de carga de 10 m³, com custo de R\$40,00 por viagem. Sendo destinados R\$2400,00 para a remoção do entulho, as quantidades de viagens necessárias para os caminhões do primeiro e do segundo tipos renovarem completamente o entulho são, respectivamente:

- a) 30 e 40
- b) 30 e 50
- c) 40 e 50
- d) 40 e 40
- e) 40 e 30

Questões complementares

Q8. (Uniube-MG) Ao descontar um cheque, recebi somente notas de R\$10,00 e R\$50,00, em um total de 14 notas. Quando fui conferir, descobri que o caixa havia se enganado, pois recebi tantas notas de R\$50,00 quanto as de R\$10,00 que deveria ter recebido e vice-versa. Percebido o erro, verifiquei que, se gastasse R\$240,00 da importância recebida, ainda ficaria com o valor do meu cheque. Qual era o valor do meu cheque?

- a) R\$540,00
- b) R\$300,00
- c) R\$480,00
- d) R\$240,00

Q9. (Unicamp ó SP) Uma empresa deve enlatar uma mistura de amendoim, castanha de caju e castanha-do-pará. Sabe-se que o quilo de amendoim custa R\$ 5,00. O quilo de castanha de caju, R\$ 20,00, e o quilo da castanha-do-pará, R\$ 16,00. Cada lata deve conter meio quilo da mistura e o custo total dos ingredientes de cada lata deve ser de R\$ 5,75. Além disso, a quantidade de castanha de caju em cada lata deve ser igual a um terço da soma das outras duas.

- a) Escreva o sistema linear que representa situação descrita acima.
- b) Resolva o referido sistema, determinando as quantidades, em gramas, de cada ingrediente por lata.

$$? - ? = -1$$

Q10. (UFPB) O sistema 2 2 + 2 = 1

tem conjunto solução:

$$? - 2? = 1$$

- a) Vazio
- b) Unitário
- c) Formado por dois elementos
- d) Formado por três elementos
- e) Infinito

$$? + ?? - 2? = 0$$

? - ? - ? = 0

Q11. (FGV-SP) O sistema linear 27 + 2 + 2 = 0

admite solução não trivial, se:

a)
$$2 = -2$$

- b) $2 \neq -2$
- c) 2 = 2
- d) ? \neq 2
- e) ② ∈ ② o conjunto dos números reais.

Q12. (UFG-GO) Um sistema linear tem a seguinte matriz de coeficientes 2 - 2 - 4 1 - 2 - 2

Uma condição necessária e suficiente sobre **k** para que o sistema tenha uma única solução é:

- a) $k \neq 4$
- b) $k \neq \frac{??}{??}$
- c) k ≠ 0
- $d) k \neq -\frac{22}{22}$
- e) k ≠ ó 4

Q13. (Ufam) Dado o sistema 2 + 2 - 2 = 1 nas variáveis x, y e z, é correto afirmar que:

- a) Tem uma solução com z-1
- b) Não tem solução
- c) Tem exatamente três soluções
- d) Tem uma solução única x=0, y=1 e z=0
- e) Tem uma infinidade de soluções.

Q14. (UFCG-PB) O gerente de um restaurante propôs a seu patrão a seguinte promoção: quem comprar os três pratos sugeridos receberá o primeiro gratuitamente. As quantidades x, y e z são os preços das iguarias que constituem o prato.

Primeiro prato: uma porção da primeira iguaria, uma porção da segunda iguaria e duas porções da terceira iguaria, por zero unidade monetária.

Segundo prato: duas porções da primeira iguaria, uma porção da segunda iguaria e $(2^{\mathbb{Z}^2\mathbb{Z}})$ porções da terceira iguaria, por uma unidade monetária.

Terceiro prato: uma porção da primeira iguaria, duas porções da segunda iguaria e duas porções da terceira iguaria, por $\log_3 \mathbb{Z}_{\mathbb{Z}^2 \mathbb{Z}}$ Zunidades monetárias. Antes de anunciar sua promoção para o público, o patrão pediu ao gerente que analisasse para ele aquela

parâmetro de ajuste do preço do prato, e fez a seguinte análise:

- I) A promoção é possível e existe um único preço para as iguarias se a $\neq 1$.
- II) A promoção é possível para qualquer preço das iguarias se a = -1.
- III) A promoção não é possível quando a =2. Está(ao) correta(s) a(s) seguinte(s) afirmação(ões) do gerente:
 - a) I, II e III
 - b) I e III

- c) II e III
- d) I e II
- e) I

Q15. (ITA-SP) A condição para que as constantes reais a e b tornem incompatível o ? + ? + 3? = 2

sistema linear 22 + 22 + 52 = 1

- a) $a \circ b \neq 2$
- b) a+b=10
- c) $4^a \circ 6b = 0$
- $d) \frac{?}{?} = \frac{?}{?}$
- e) $a \cdot b = 24$

Gabarito ó ESTUDO DAS MATRIZES

Q10.d

Q1.
$$A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Q2.
$$a_{32} + a_{42} = 64$$
. Q11. 94

Q3.
$$a = 2 e b = 3$$
. Q12. b

Q4.
$$X = \begin{bmatrix} 0 & -4 \\ 0 & 5 \end{bmatrix}$$
 Q13. a

Q5.
$$X = \begin{bmatrix} 2 \\ -9 \\ -3 \end{bmatrix}$$
 Q14. d

Q6.
$$\begin{bmatrix} -8 & 0 \\ 0 & 6 \end{bmatrix}$$
 Q15. c

$$Q6. \begin{bmatrix} -8 & 0 \\ 0 & 6 \end{bmatrix}$$

$$Q7. \begin{bmatrix} -8 & 0 \\ 0 & 6 \end{bmatrix}$$

$$Q15. c$$

$$Q16.d$$

b) 37,3°

Q7. d

Q8. c

Gabarito óDETERMINANTE

Q1. a) 10 b) 49 c) -47 Q9. d
Q2. a)
$$2 = 2$$
 $2 = -\frac{2}{2}$ Q10. d
b) $2 = 1$ $2 = -4$ Q11. d
Q3. y = 0
Q4. 171 Q12. b
Q5. $\frac{2}{2}$ Q13. a
Q6. 5 Q14. $2 \in 2 | 2 \ge 1$

Gabarito óSISTEMAS DE EQUAÇÕES LINEARES

Q15. c

Q16. e

Q1. a)
$$S = \{(1,2)\}$$

b) $S = \{(2,0,5)\}$
c) $S = \{(1,-1,1)\}$
d) $S = \{(2,1,0)\}$
Q2. $\{a \in IR \mid a \neq 1\}$
Q3. $\alpha = \frac{3}{2}$
Q4. 40 patos
Q5.e
Q6.a
Q7. e
Q8.
Q9.
 $2 + 2 + 2 = 0$
 $5 = 0$
 $5 = 0$
 $2 + 2 + 2 = 0$
 $3 + 2 = 0$
 $5 = 0$
 $2 + 2 + 2 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 3