

Resumo Expandido

Título da Pesquisa: Análise Físico-química do Feno de Aguapé (*Eichhronia crassipes*)

Palavras-chave: Fenação, Tifton, Alimento Alternativo, Composição Química do Aguapé.

Campus: Bambuí Tipo de Bolsa: PIBIC Financiador: Fapemig

Bolsista (as): Rafael Antônio Nunes Coura, Rael Magalhães Ferraz, Mariane Lasmar Chaves, Tamiris Rosario do Nascimento, Karynne Luana Chaves de Paula

Professor Orientador: André Luis da Costa Paiva

Área de Conhecimento: Forragem

Resumo: O feno de aguapé torna uma alternativa alimentar interessante pelos seus valores de proteínas e lipídeos, frações importantes para energia e proteína das rações, como também mais caras e insubstituíveis no seu papel biológico. O objetivo deste trabalho foi avaliar a composição química do feno de aguapé (*Echhornia crassipes*) coletado na lagoa do Instituto Federal de Minas Gerais — Campus Bambuí. Pode-se concluir que o feno de aguapé apresenta níveis elevados de valores protéicos e energéticos, podendo ser uma fonte alternativa de ingredientes utilizados na nutrição de ruminantes, levando em consideração sua alta produtividade.

INTRODUÇÃO

O aguapé (*Eichornia Crassipes*) macrófita da família das *Pontederiáceas*, mais conhecida como "Jacinto d'água", no Brasil recebe ainda o nome de baronesa, camalote e outros. É uma planta aquática originária da região tropical da América Central, sendo hoje encontrada por mais de 50 países do mundo (Wolverton & McDonald, 1979). É uma planta consistindo de raízes, rizomas, estolões, pecíolos, folhas e inflorescências. Varia em altura desde alguns centímetros até cerca de um metro, suspensas na água ou fixas no fundo em águas rasas.

O aproveitamento da biomassa (E. crassipes) que antes era considerado praga para muitos passou a ser uma preocupação de todos os países principalmente do primeiro mundo. Dentre as diversas fontes de biomassa, a planta aquática aguapé (Eichornia crassipes), se destaca pela sua enorme velocidade de crescimento (1t/ha/dia), segundo Mukuno et al., (1985). O aguapé retira da água elementos químicos minerais dos quais se nutre, diminuindo suas concentrações, aliado a isso o custo nulo de produção e sua boa composição química observada por Wolverton & McDonald, (1979). De acordo com Batista et al., (2004) além disso, a planta tem um alto valor proteico que poderá ser avaliada no consumo como forrageira para ruminantes.

A alimentação é um dos principais componentes do custo de produção. Para reduzir os custos com a aquisição de alimentos, o criador deve produzir de forma econômica a maior parte do volumoso e do concentrado utilizados, levando em conta o que há disponível na propriedade e os subprodutos da agricultura ou fruticultura disponíveis na região (MAIA, 2009).

O aguapé absorve nutrientes da água e os incorpora à sua biomassa, reduzindo as concentrações de nutrientes do efluente. Segundo Lutzenberger (1985) a *Eichhornia*, em clima tropical e em água bem poluída,

pode facilmente produzir entre 150 a 300 to/ha/ano, em base de matéria seca. Estudos comprovam que as macrófitas aquáticas podem substituir parcialmente ingredientes convencionais em dietas animal.

Segundo Henry-Silva (2006) o aguapé (*E. crassipes*) avaliada em uma área de 0,25m² dividida em parte aérea e submersa apresentou maior valor nutritivo na parte a aérea sendo de 60,7%, e os teores de proteína bruta de 10,1%, carboidratos solúveis de 26,16% e lipídios de 7,6%. Conclui-se que a parte aérea de *E. crassipes* têm valor nutritivo com potencial para uso na alimentação de ruminantes ou na formulação de rações.

Considerando a importância da alimentação sobre o efeito na produção e nas características gerais dos ruminantes, justifica-se a necessidade de estudos sobre análise bromatológica do aguapé, visando quantificar dados nutricionais para elaboração de um melhor fornecimento.

Muita atenção tem sido dada à utilização de fontes alternativas de alimentos. A utilização desses produtos eliminados poderia contribuir na produção de novos recursos alimentícios e, ao mesmo tempo, minimizar os problemas com a alta proliferação do aguapé. Porém, para que isso ocorra é necessário realizar pesquisas sobre esses alimentos, em relação sua produção e consumo para estimar a quantidade de resíduo produzido e sua utilização na alimentação animal.

O objetivo deste trabalho foi avaliar a composição bromatológica do feno de aguapé como fonte alternativa de proteína, fibra e emergia na alimentação animal.

Metodologia

As amostras de aguapé (*E. crassipes*) foram retiradas da lagoa principal do Instituto Federal de Minas Gerais – Campus Bambuí, e analisadas no Laboratório de Bromatológia e Nutrição Animal do Instituto Federal de Minas Gerais – Campus Bambuí.

Para avaliar o aguapé de diferentes formas foi utilizado o aguapé sem raiz e o com raiz. Para avaliação da composição química do feno de aguapé, as análises de umidade foram realizadas por gravimetria após secagem total do material em estufa regulada a 105 °C. As cinzas foram determinadas por gravimetria após incineração do material em mufla a 550 °C. O extrato etéreo foi determinado em extrator intermitente de *Soxhlet*, utilizando-se éter de petróleo como solvente, e as proteínas foram determinadas em método de digestão *Kjeldahl* e foi empregado o fator de 6,25 para a conversão do nitrogênio em proteínas. O cálcio foi analisado por oxidimetria utilizando como reagente HCL.

Resultados e discussões

Os resultados encontrados nas análises da composição química do feno de aguapé sem raiz e com raiz pode ser comparado a outros analises de feno, como o feno de tifton.

Tabela1- Analise comparativa do Feno de Aguapé (*E. crassipes*) com raiz e sem raiz com o Feno de Tifton.

Parâmetros Avaliados (%)	Composição Química			
	Aguapé sem Raiz	Aguapé com Raiz	Tifton	
Matéria Seca	84,13	87,23	87,11	
Matéria Mineral	8,82	15,63	7,67	
Proteína Bruta	8,23	8,71	5,89	
Fibra em Detergente Neutro	36,72	38,14	79,60	
Fibra em Detergente Ácido	22,02	25,18	32,80	
Estrato Estéreo	2,25	2,02	1,56	
Cálcio	0,77	0,41		

Os teores médios encontrados para proteína e lipídios foram superiores aos encontrados por Junior (2008), valores elevados que qualifica o alimento como ótima fonte de energia e proteína. Já o teor encontrado neste trabalho para cálcio não pode ser comparado por não ter sido nenhum apresentado por Junior (2008).

Conclusões

Na avaliação da composição química do feno de aguapé, foi encontrado valores consideráveis de nutrientes importantes para nutrição animal, como proteína bruta e extrato etéreo, estes de custo elevado nas formulações de rações, podendo reduzir o custo de produção, favorecendo o aproveitamento de resíduos industriais tornando-se ótima fonte de ingredientes para alimentação animal. Pesquisas deverão ser desenvolvidas para determinar o valor nutricional do feno de aguapé nas dietas dos animais levando em consideração que a sua composição químico-bromatologica pode variar de acordo com as condições do local de proliferação.

Referência Bibliográfica:

BAVARESCO, A. S. DO L. Lagoas de Aguapés no Tratamento Terciário de Dejetos de Suínos. Florianópolis: UFSC, 1998. (Dissertação de Mestrado)

HENRY-SILVA, G.G.; CAMARGO, A.F.M. Composição Química de Macrófitas Aquáticas Flutuantes Utilizadas no Tratamento de Efluentes de Aquicultura. Plantas Daninha, v.24, n.1, Viçosa, 2006.

JUNIOR, A. F. de Mendonça. Avaliação da composição química, consumo voluntário e digestibilidade in vivo de dietas com diferentes níveis de feno de maniçoba (*Manihot glaziovii* Mueel. Arg.), fornecidas a ovinos. Revista de Biologia e Ciência da Terra. Vol. 8, Nº 1 – 1º Semestre 2008.

MUKUNO, D. R. O. et al. **Efeito de fatores ambientais na morfologia das plantas de Aguapé**. Revista Brasileira de Botânica, v. 8, p. 231-239, 1985.

MAIA, M. da Silva. Alternativas para a Caprinovinocultura na Agricultura Familiar/ Marciane da Silva Maia et AL; Revisado por Maria de Fátima Pinto Barreto. Natal: EMPARN, 2009.

WOLVERTON, B. C.; MCDONALD, R. C. The water hyacinth from prolific pest to potencial provider. AMBIO, v. 8, n. 1, 1979.